Your browser doesn't support javascript.
loading
Neutrophils in community-acquired pneumonia: parallels in dysfunction at the extremes of age.
Grudzinska, Frances Susanna; Brodlie, Malcolm; Scholefield, Barnaby R; Jackson, Thomas; Scott, Aaron; Thickett, David R; Sapey, Elizabeth.
Afiliação
  • Grudzinska FS; Institute of Inflammation and Ageing, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK F.GRUDZINSKA@bham.ac.uk.
  • Brodlie M; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
  • Scholefield BR; Institute of Inflammation and Ageing, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK.
  • Jackson T; Institute of Inflammation and Ageing, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK.
  • Scott A; Institute of Inflammation and Ageing, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK.
  • Thickett DR; Institute of Inflammation and Ageing, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK.
  • Sapey E; Institute of Inflammation and Ageing, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK.
Thorax ; 75(2): 164-171, 2020 02.
Article em En | MEDLINE | ID: mdl-31732687
ABSTRACT
"Science means constantly walking a tight rope" Heinrich Rohrer, physicist, 1933. Community-acquired pneumonia (CAP) is the leading cause of death from infectious disease worldwide and disproportionately affects older adults and children. In high-income countries, pneumonia is one of the most common reasons for hospitalisation and (when recurrent) is associated with a risk of developing chronic pulmonary conditions in adulthood. Pneumococcal pneumonia is particularly prevalent in older adults, and here, pneumonia is still associated with significant mortality despite the widespread use of pneumococcal vaccination in middleand high-income countries and a low prevalence of resistant organisms. In older adults, 11% of pneumonia survivors are readmitted within months of discharge, often with a further pneumonia episode and with worse outcomes. In children, recurrent pneumonia occurs in approximately 10% of survivors and therefore is a significant cause of healthcare use. Current antibiotic trials focus on short-term outcomes and increasingly shorter courses of antibiotic therapy. However, the high requirement for further treatment for recurrent pneumonia questions the effectiveness of current strategies, and there is increasing global concern about our reliance on antibiotics to treat infections. Novel therapeutic targets and approaches are needed to improve outcomes. Neutrophils are the most abundant immune cell and among the first responders to infection. Appropriate neutrophil responses are crucial to host defence, as evidenced by the poor outcomes seen in neutropenia. Neutrophils from older adults appear to be dysfunctional, displaying a reduced ability to target infected or inflamed tissue, poor phagocytic responses and a reduced capacity to release neutrophil extracellular traps (NETs); this occurs in health, but responses are further diminished during infection and particularly during sepsis, where a reduced response to granulocyte colony-stimulating factor (G-CSF) inhibits the release of immature neutrophils from the bone marrow. Of note, neutrophil responses are similar in preterm infants. Here, the storage pool is decreased, neutrophils are less able to degranulate, have a reduced migratory capacity and are less able to release NETs. Less is known about neutrophil function from older children, but theoretically, impaired functions might increase susceptibility to infections. Targeting these blunted responses may offer a new paradigm for treating CAP, but modifying neutrophil behaviour is challenging; reducing their numbers or inhibiting their function is associated with poor clinical outcomes from infection. Uncontrolled activation and degranulation can cause significant host tissue damage. Any neutrophil-based intervention must walk the tightrope described by Heinrich Rohrer, facilitating necessary phagocytic functions while preventing bystander host damage, and this is a significant challenge which this review will explore.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pneumonia Pneumocócica / Fator Estimulador de Colônias de Granulócitos / Infecções Comunitárias Adquiridas / Neutropenia Tipo de estudo: Etiology_studies / Incidence_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Aged / Child / Child, preschool / Female / Humans / Infant / Male / Middle aged País/Região como assunto: America do norte Idioma: En Revista: Thorax Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pneumonia Pneumocócica / Fator Estimulador de Colônias de Granulócitos / Infecções Comunitárias Adquiridas / Neutropenia Tipo de estudo: Etiology_studies / Incidence_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Aged / Child / Child, preschool / Female / Humans / Infant / Male / Middle aged País/Região como assunto: America do norte Idioma: En Revista: Thorax Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido