Your browser doesn't support javascript.
loading
Ultra-Sensitive Piezo-Resistive Sensors Constructed with Reduced Graphene Oxide/Polyolefin Elastomer (RGO/POE) Nanofiber Aerogels.
Zhong, Weibing; Jiang, Haiqing; Yang, Liyan; Yadav, Ashish; Ding, Xincheng; Chen, Yuanli; Li, Mufang; Sun, Gang; Wang, Dong.
Afiliação
  • Zhong W; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
  • Jiang H; Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
  • Yang L; Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
  • Yadav A; Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
  • Ding X; Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
  • Chen Y; Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
  • Li M; Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
  • Sun G; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
  • Wang D; Division of Textiles and Clothing, University of California, Davis, CA 95616-8598, USA.
Polymers (Basel) ; 11(11)2019 Nov 14.
Article em En | MEDLINE | ID: mdl-31739563
ABSTRACT
Flexible wearable pressure sensors have received extensive attention in recent years because of the promising application potentials in health management, humanoid robots, and human machine interfaces. Among the many sensory performances, the high sensitivity is an essential requirement for the practical use of flexible sensors. Therefore, numerous research studies are devoted to improving the sensitivity of the flexible pressure sensors. The fiber assemblies are recognized as an ideal substrate for a highly sensitive piezoresistive sensor because its three-dimensional porous structure can be easily compressed and can provide high interconnection possibilities of the conductive component. Moreover, it is expected to achieve high sensitivity by raising the porosity of the fiber assemblies. In this paper, the three-dimensional reduced graphene oxide/polyolefin elastomer (RGO/POE) nanofiber composite aerogels were prepared by chemical reducing the graphene oxide (GO)/POE nanofiber composite aerogels, which were obtained by freeze drying the mixture of the GO aqueous solution and the POE nanofiber suspension. It was found that the volumetric shrinkage of thermoplastic POE nanofibers during the reduction process enhanced the compression mechanical strength of the composite aerogel, while decreasing its sensitivity. Therefore, the composite aerogels with varying POE nanofiber usage were prepared to balance the sensitivity and working pressure range. The results indicated that the composite aerogel with POE nanofiber/RGO proportion of 33 was the optimal sample, which exhibits high sensitivity (ca. 223 kPa-1) and working pressure ranging from 0 to 17.7 kPa. In addition, the composite aerogel showed strong stability when it is either compressed with different frequencies or reversibly compressed and released 5000 times.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Polymers (Basel) Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Polymers (Basel) Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China