ZIF-8-Assisted NaYF4:Yb,Tm@ZnO Converter with Exonuclease III-Powered DNA Walker for Near-Infrared Light Responsive Biosensor.
Anal Chem
; 92(1): 1470-1476, 2020 01 07.
Article
em En
| MEDLINE
| ID: mdl-31762255
This work reports a ZIF-8 (ZIF: Zeolitic Imidazolate Framework)-assisted NaYF4:Yb,Tm@ZnO upconverter for the photoelectrochemical (PEC) biosensing of carcinoembryonic antigen (CEA) under near-infrared (NIR) irradiation on a homemade 3D-printed device with DNA walker-based amplification strategy. The composite photosensitive material NaYF4:Yb,Tm@ZnO, as converter to transfer NIR import to photocurrent output, was driven from annealed NaYF4:Yb,Tm@ZIF-8. Yb3+ and Tm3+-codoped NaYF4 (NaYF4:Yb,Tm) converted NIR excitation into UV emission, matching with the absorption of ZnO for in situ excitation to generate the photocurrent. Upon target CEA introduction, the swing arm of DNA walker including the sequence of CEA aptamer carried out the sandwiched bioassembly with CEA capture aptamer on the G-rich anchorage DNA tracks-functionalized magnetic beads. Thereafter, DNA walker was triggered, and the swing arm DNA was captured by the G-rich anchorage DNA according to partly complementary pairing and Exonuclease III (Exo III) consumed anchorage DNA by a burnt-bridge mechanism to go into the next cycle. The released guanine (G) bases from DNA walker enhanced the photocurrent response on a miniature homemade 3D-printed device consisting of the detection cell, dark box, and light platform. Under optimal conditions, NaYF4:Yb,Tm@ZnO-based NIR light-driven PEC biosensor presented high sensitivity and selectivity for CEA sensing with a detection limit of 0.032 ng mL-1. Importantly, our strategy provides a new horizon for the development of NIR-based PEC biosensors in the aspect of developing MOF-derived photoelectric materials, flexible design of a 3D-printed device, and effective signal amplification mode.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
DNA
/
Técnicas Biossensoriais
/
Exodesoxirribonucleases
/
Técnicas Eletroquímicas
Limite:
Humans
Idioma:
En
Revista:
Anal Chem
Ano de publicação:
2020
Tipo de documento:
Article