Leaf vascular architecture in temperate dicotyledons: correlations and link to functional traits.
Planta
; 251(1): 17, 2019 Nov 27.
Article
em En
| MEDLINE
| ID: mdl-31776668
MAIN CONCLUSIONS: Using 227 dicotyledonous species in temperate region, we found the relationships among densities of different-order veins, creating diversity of leaf vascular architectures. Dicotyledonous angiosperms commonly possess a hierarchical leaf vascular system, wherein veins of different orders have different functions. Minor vein spacing determines leaf hydraulic efficiency, whereas the major veins provide mechanical support. However, there is limited information on the coordination between these vein orders across species, limiting our understanding of how diversity in vein architecture is arrayed. We aimed to examine the (1) relationships between vein densities at two spatial scales (lower- vs. higher-order veins and among minor veins) and (2) relationships of vein densities with plant functional traits. We studied ten traits related to vein densities and three functional traits (leaf dry mass per area [LMA], leaf longevity [LL], and adult plant height [Hadult]) for 227 phylogenetically diverse plant species that occur in temperate regions and examined the vein-vein and vein-functional traits relationships across species. The densities of lower- and higher-order veins were positively correlated across species. The minor vein density was positively correlated with the densities of both areoles and free-ending veins, and vascular networks with higher minor vein density tended to have a lower ratio of free-ending veins to areoles across species. Neither densities of lower- nor higher-order veins were related to LMA and LL. On the other hand, the densities of veins and areoles tended to be positively correlated with Hadult. These results suggest that densities of different-order veins are developmentally coordinated across dicotyledonous angiosperms and form the independent axis in resource use strategies based on the leaf economics spectrum.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Folhas de Planta
/
Magnoliopsida
Idioma:
En
Revista:
Planta
Ano de publicação:
2019
Tipo de documento:
Article
País de afiliação:
Japão