Your browser doesn't support javascript.
loading
DGCR8/ZFAT-AS1 Promotes CDX2 Transcription in a PRC2 Complex-Dependent Manner to Facilitate the Malignant Biological Behavior of Glioma Cells.
Zhang, Fangfang; Ruan, Xuelei; Ma, Jun; Liu, Xiaobai; Zheng, Jian; Liu, Yunhui; Liu, Libo; Shen, Shuyuan; Shao, Lianqi; Wang, Di; Yang, Chunqing; Cai, Heng; Li, Zhen; Feng, Ziyi; Xue, Yixue.
Afiliação
  • Zhang F; Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Educat
  • Ruan X; Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Educat
  • Ma J; Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Educat
  • Liu X; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
  • Zheng J; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
  • Liu Y; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
  • Liu L; Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Educat
  • Shen S; Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Educat
  • Shao L; Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Educat
  • Wang D; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
  • Yang C; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
  • Cai H; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
  • Li Z; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
  • Feng Z; Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China; The 102th Class, Experimental Class of Clinical Medicine Discipline, China Medical University, Shenyang 110122, Liaoning Province, China.
  • Xue Y; Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, People's Republic of China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Educat
Mol Ther ; 28(2): 613-630, 2020 02 05.
Article em En | MEDLINE | ID: mdl-31813799
Studies have found that RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are dysregulated and play an important regulatory role in the development of tumors. Based on The Cancer Genome Atlas (TCGA) database, our findings from experiments, and the evidence of previous studies, we screened DiGeorge syndrome critical region gene 8 (DGCR8), ZFAT antisense RNA 1 (ZFAT-AS1), and caudal type homeobox 2 (CDX2) as research candidates. In the present study, DGCR8 and CDX2 were highly expressed and ZFAT-AS1 was markedly downregulated in glioma tissues and cells. DGCR8 or CDX2 knockdown or ZFAT-AS1 overexpression suppressed glioma cell proliferation, migration, and invasion and facilitated apoptosis. DGCR8 might decrease ZFAT-AS1 expression by attenuating its stability in a manner of inducing its cleavage. Importantly, ZFAT-AS1 could inhibit CDX2 transcription by mediating the methylation of histone H3 on lysine 27 (H3K27me3) modification induced by PRC2 in the CDX2 promoter region. In addition, CDX2 transcriptionally activated DGCR8 expression by binding to its promoter regions, forming a positive feedback loop of DGCR8/ZFAT-AS1/CDX2. In conclusion, DGCR8/ZFAT-AS1 promotes CDX2 transcription in a PRC2 complex-dependent manner to facilitate the malignant biological behavior of glioma cells.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Regulação Neoplásica da Expressão Gênica / RNA Antissenso / Proteínas de Ligação a RNA / RNA Longo não Codificante / Fator de Transcrição CDX2 / Glioma Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Ther Assunto da revista: BIOLOGIA MOLECULAR / TERAPEUTICA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Regulação Neoplásica da Expressão Gênica / RNA Antissenso / Proteínas de Ligação a RNA / RNA Longo não Codificante / Fator de Transcrição CDX2 / Glioma Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Ther Assunto da revista: BIOLOGIA MOLECULAR / TERAPEUTICA Ano de publicação: 2020 Tipo de documento: Article