Your browser doesn't support javascript.
loading
Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: A machine learning approach.
Bachli, M Belen; Sedeño, Lucas; Ochab, Jeremi K; Piguet, Olivier; Kumfor, Fiona; Reyes, Pablo; Torralva, Teresa; Roca, María; Cardona, Juan Felipe; Campo, Cecilia Gonzalez; Herrera, Eduar; Slachevsky, Andrea; Matallana, Diana; Manes, Facundo; García, Adolfo M; Ibáñez, Agustín; Chialvo, Dante R.
Afiliação
  • Bachli MB; Center for Complex Systems & Brain Sciences (CEMSC(3)), Escuela de Ciencia y Tecnologia (ECyT), Universidad Nacional de San Martín, 25 de Mayo 1169, San Martín, (1650), Buenos Aires, Argentina.
  • Sedeño L; Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina. Electronic address: lucas.sedeno@gmail.com.
  • Ochab JK; Marian Smoluchowski Institute of Physics, Mark Kac Complex Systems Research Center Jagiellonian University, Ul. Lojasiewicza 11, PL30-348, Kraków, Poland.
  • Piguet O; ARC Centre of Excellence in Cognition and Its Disorders, Sydney, Australia; The University of Sydney, Brain and Mind Centre and School of Psychology, Sydney, Australia.
  • Kumfor F; ARC Centre of Excellence in Cognition and Its Disorders, Sydney, Australia; The University of Sydney, Brain and Mind Centre and School of Psychology, Sydney, Australia.
  • Reyes P; Radiology, Hospital Universitario San Ignacio (HUSI), Bogotá, Colombia; Medical School, Physiology Sciences, Psychiatry and Mental Health Pontificia Universidad Javeriana (PUJ) - Centro de Memoria y Cognición Intellectus, Hospital Universitario San Ignacio (HUSI), Bogotá, Colombia.
  • Torralva T; Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.
  • Roca M; Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.
  • Cardona JF; Instituto de Psicología, Universidad del Valle, Cali, Colombia.
  • Campo CG; Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina.
  • Herrera E; Departamento de Estudios Psicológicos, Universidad Icesi, Cali, Colombia.
  • Slachevsky A; Gerosciences Center for Brain Health and Metabolism, Santiago, Chile; Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, ICBM, Neurosciences Department, East Neuroscience Department, Faculty of Medicine, University of Chile, Avenida Salvador 486, Providencia,
  • Matallana D; Medical School, Aging Institute, Psychiatry and Mental Health, Pontificia Universidad Javeriana (PUJ) - Centro de Memoria y Cognición Intellectus. Hospital Universitario San Ignacio (HUSI), Bogotá, Colombia.
  • Manes F; Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina; ARC Centre of Excellence in Cognition and Its Disorders,
  • García AM; Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina; Faculty of Education, National University of Cuyo (UNCuy
  • Ibáñez A; Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina; ARC Centre of Excellence in Cognition and Its Disorders,
  • Chialvo DR; Center for Complex Systems & Brain Sciences (CEMSC(3)), Escuela de Ciencia y Tecnologia (ECyT), Universidad Nacional de San Martín, 25 de Mayo 1169, San Martín, (1650), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aire
Neuroimage ; 208: 116456, 2020 03.
Article em En | MEDLINE | ID: mdl-31841681
Accurate early diagnosis of neurodegenerative diseases represents a growing challenge for current clinical practice. Promisingly, current tools can be complemented by computational decision-support methods to objectively analyze multidimensional measures and increase diagnostic confidence. Yet, widespread application of these tools cannot be recommended unless they are proven to perform consistently and reproducibly across samples from different countries. We implemented machine-learning algorithms to evaluate the prediction power of neurocognitive biomarkers (behavioral and imaging measures) for classifying two neurodegenerative conditions -Alzheimer Disease (AD) and behavioral variant frontotemporal dementia (bvFTD)- across three different countries (>200 participants). We use machine-learning tools integrating multimodal measures such as cognitive scores (executive functions and cognitive screening) and brain atrophy volume (voxel based morphometry from fronto-temporo-insular regions in bvFTD, and temporo-parietal regions in AD) to identify the most relevant features in predicting the incidence of the diseases. In the Country-1 cohort, predictions of AD and bvFTD became maximally improved upon inclusion of cognitive screenings outcomes combined with atrophy levels. Multimodal training data from this cohort allowed predicting both AD and bvFTD in the other two novel datasets from other countries with high accuracy (>90%), demonstrating the robustness of the approach as well as the differential specificity and reliability of behavioral and neural markers for each condition. In sum, this is the first study, across centers and countries, to validate the predictive power of cognitive signatures combined with atrophy levels for contrastive neurodegenerative conditions, validating a benchmark for future assessments of reliability and reproducibility.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Demência Frontotemporal / Função Executiva / Doença de Alzheimer / Aprendizado de Máquina Tipo de estudo: Clinical_trials / Evaluation_studies / Prognostic_studies / Screening_studies Limite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Argentina

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Demência Frontotemporal / Função Executiva / Doença de Alzheimer / Aprendizado de Máquina Tipo de estudo: Clinical_trials / Evaluation_studies / Prognostic_studies / Screening_studies Limite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Argentina