Your browser doesn't support javascript.
loading
Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms.
Chung, Chia-Ru; Jhong, Jhih-Hua; Wang, Zhuo; Chen, Siyu; Wan, Yu; Horng, Jorng-Tzong; Lee, Tzong-Yi.
Afiliação
  • Chung CR; Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan.
  • Jhong JH; Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.
  • Wang Z; Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.
  • Chen S; School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.
  • Wan Y; School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.
  • Horng JT; Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan.
  • Lee TY; Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41359, Taiwan.
Int J Mol Sci ; 21(3)2020 Feb 02.
Article em En | MEDLINE | ID: mdl-32024233
Because of the rapid development of multidrug resistance, conventional antibiotics cannot kill pathogenic bacteria efficiently. New antibiotic treatments such as antimicrobial peptides (AMPs) can provide a possible solution to the antibiotic-resistance crisis. However, the identification of AMPs using experimental methods is expensive and time-consuming. Meanwhile, few studies use amino acid compositions (AACs) and physicochemical properties with different sequence lengths against different organisms to predict AMPs. Therefore, the major purpose of this study is to identify AMPs on seven categories of organisms, including amphibians, humans, fish, insects, plants, bacteria, and mammals. According to the one-rule attribute evaluation, the selected features were used to construct the predictive models based on the random forest algorithm. Compared to the accuracies of iAMP-2L (a web-server for identifying AMPs and their functional types), ADAM (a database of AMP), and MLAMP (a multi-label AMP classifier), the proposed method yielded higher than 92% in predicting AMPs on each category. Additionally, the sensitivities of the proposed models in the prediction of AMPs of seven organisms were higher than that of all other tools. Furthermore, several physicochemical properties (charge, hydrophobicity, polarity, polarizability, secondary structure, normalized van der Waals volume, and solvent accessibility) of AMPs were investigated according to their sequence lengths. As a result, the proposed method is a practical means to complement the existing tools in the characterization and identification of AMPs in different organisms.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bactérias / Algoritmos / Peptídeos Catiônicos Antimicrobianos / Farmacorresistência Bacteriana / Antibacterianos Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Taiwan

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bactérias / Algoritmos / Peptídeos Catiônicos Antimicrobianos / Farmacorresistência Bacteriana / Antibacterianos Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Taiwan