Your browser doesn't support javascript.
loading
Coalescence modeling of intrainfection Bacillus anthracis populations allows estimation of infection parameters in wild populations.
Easterday, W Ryan; Ponciano, José Miguel; Gomez, Juan Pablo; Van Ert, Matthew N; Hadfield, Ted; Bagamian, Karoun; Blackburn, Jason K; Stenseth, Nils Chr; Turner, Wendy C.
Afiliação
  • Easterday WR; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0317 Oslo, Norway.
  • Ponciano JM; Department of Biology, University of Florida, Gainesville, FL 32611.
  • Gomez JP; Departamento de Química y Biología, Universidad del Norte, 080020 Barranquilla, Colombia.
  • Van Ert MN; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611.
  • Hadfield T; Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL 32611.
  • Bagamian K; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611.
  • Blackburn JK; Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL 32611.
  • Stenseth NC; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611.
  • Turner WC; Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL 32611.
Proc Natl Acad Sci U S A ; 117(8): 4273-4280, 2020 02 25.
Article em En | MEDLINE | ID: mdl-32054783
Bacillus anthracis, the etiological agent of anthrax, is a well-established model organism. For B. anthracis and most other infectious diseases, knowledge regarding transmission and infection parameters in natural systems, in large part, comprises data gathered from closely controlled laboratory experiments. Fatal, natural anthrax infections transmit the bacterium through new host-pathogen contacts at carcass sites, which can occur years after death of the previous host. For the period between contact and death, all of our knowledge is based upon experimental data from domestic livestock and laboratory animals. Here we use a noninvasive method to explore the dynamics of anthrax infections, by evaluating the terminal diversity of B. anthracis in anthrax carcasses. We present an application of population genetics theory, specifically, coalescence modeling, to intrainfection populations of B. anthracis to derive estimates for the duration of the acute phase of the infection and effective population size converted to the number of colony-forming units establishing infection in wild plains zebra (Equus quagga). Founding populations are small, a few colony-forming units, and infections are rapid, lasting roughly between 1 d and 3 d in the wild. Our results closely reflect experimental data, showing that small founding populations progress acutely, killing the host within days. We believe this method is amendable to other bacterial diseases from wild, domestic, and human systems.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bacillus anthracis / Equidae / Antraz Limite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Noruega

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bacillus anthracis / Equidae / Antraz Limite: Animals / Humans Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Noruega