Your browser doesn't support javascript.
loading
Enhanced 2,4,6-trichlorophenol degradation and biogas production with a coupled microbial electrolysis cell and anaerobic granular sludge system.
Zhu, Qian; Bu, Chenpeng; Yang, Changzhu; Hu, Jingping; Liu, Bingchuan; Liang, Sha; Xiao, Keke; Yang, Jiakuan; Hou, Huijie.
Afiliação
  • Zhu Q; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China.
  • Bu C; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China.
  • Yang C; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China.
  • Hu J; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China; State Key Laboratory of Coal Combustion, H
  • Liu B; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China.
  • Liang S; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China.
  • Xiao K; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China.
  • Yang J; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China; State Key Laboratory of Coal Combustion, H
  • Hou H; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China. Electronic address: houhuijie@hust.edu.cn.
Bioresour Technol ; 303: 122958, 2020 May.
Article em En | MEDLINE | ID: mdl-32058911
ABSTRACT
A coupled microbial electrolysis cell - anaerobic granular sludge system (MEC-AGS) was established to explore the degradation efficiency of 2,4,6-trichlorophenol (TCP) with synchronous biogas production. Results showed that MEC-AGS yielded a higher proportion of CH4 than MEC (83.8 ± 0.4% vs 82.0 ± 1.0%, P < 0.05) with sodium acetate (NaAc) as the only carbon source. Moreover, MEC-AGS had higher tolerance to the addition of TCP, with the highest TCP degradation efficiency of 45.5 ± 0.5% under 5 mg L-1 of TCP addition in 24 h. Furthermore, microbial community structures were significantly changed based on community composition, hierarchical cluster and PCoA analysis, which proved that MEC-AGS favored the enrichment of dechlorination-related microbes such as Pseudomonas, Desulfovibrio and Longilinea, as well as their syntrophic bacteria of Anaerolineacea, Syntrophobacter, Arcobacter, etc. The coupled system provides a promising strategy for biogas production from wastewater with recalcitrant organics.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esgotos / Biocombustíveis Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esgotos / Biocombustíveis Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2020 Tipo de documento: Article