Your browser doesn't support javascript.
loading
Personalized signaling models for personalized treatments.
Saez-Rodriguez, Julio; Blüthgen, Nils.
Afiliação
  • Saez-Rodriguez J; Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany.
  • Blüthgen N; Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Aachen, Germany.
Mol Syst Biol ; 16(1): e9042, 2020 01.
Article em En | MEDLINE | ID: mdl-32129942
Dynamic mechanistic models, that is, those that can simulate behavior over time courses, are a cornerstone of molecular systems biology. They are being used to model molecular mechanisms with varying degrees of granularity-from elementary reactions to causal links-and to describe these systems by various dynamic mathematical frameworks, such as Boolean networks or systems of differential equations. The models can be based exclusively on experimental data, or on prior knowledge of the underlying biological processes. The latter are typically generic, but can be adapted to a certain context, such as a particular cell type, after training with context-specific data. Dynamic mechanistic models that are based on biological knowledge have great potential for modeling specific systems, because they require less data for training to provide biological insight in particular into causal mechanisms, and to extrapolate to scenarios that are outside the conditions they have been trained on.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biologia de Sistemas / Redes Reguladoras de Genes / Medicina de Precisão Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Mol Syst Biol Assunto da revista: BIOLOGIA MOLECULAR / BIOTECNOLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biologia de Sistemas / Redes Reguladoras de Genes / Medicina de Precisão Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Mol Syst Biol Assunto da revista: BIOLOGIA MOLECULAR / BIOTECNOLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha