Your browser doesn't support javascript.
loading
nanoTRON: a Picasso module for MLP-based classification of super-resolution data.
Auer, Alexander; Strauss, Maximilian T; Strauss, Sebastian; Jungmann, Ralf.
Afiliação
  • Auer A; Department of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany.
  • Strauss MT; Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
  • Strauss S; Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
  • Jungmann R; Department of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany.
Bioinformatics ; 36(11): 3620-3622, 2020 06 01.
Article em En | MEDLINE | ID: mdl-32145010
MOTIVATION: Classification of images is an essential task in higher-level analysis of biological data. By bypassing the diffraction limit of light, super-resolution microscopy opened up a new way to look at molecular details using light microscopy, producing large amounts of data with exquisite spatial detail. Statistical exploration of data usually needs initial classification, which is up to now often performed manually. RESULTS: We introduce nanoTRON, an interactive open-source tool, which allows super-resolution data classification based on image recognition. It extends the software package Picasso with the first deep learning tool with a graphic user interface. AVAILABILITY AND IMPLEMENTATION: nanoTRON is written in Python and freely available under the MIT license as a part of the software collection Picasso on GitHub (http://www.github.com/jungmannlab/picasso). All raw data can be obtained from the authors upon reasonable request. CONTACT: jungmann@biochem.mpg.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Microscopia Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Microscopia Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha