Your browser doesn't support javascript.
loading
Enhancing Molecular Electrocatalysis of CO2 Reduction with Pressure-Tunable CO2 -Expanded Electrolytes.
Sconyers, David J; Shaughnessy, Charles I; Lee, Hyun-Jin; Subramaniam, Bala; Leonard, Kevin C; Blakemore, James D.
Afiliação
  • Sconyers DJ; Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA.
  • Shaughnessy CI; Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas, 66045, USA.
  • Lee HJ; Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA.
  • Subramaniam B; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W 15th Street, Lawrence, Kansas, 66045, USA.
  • Leonard KC; Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA.
  • Blakemore JD; Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA.
ChemSusChem ; 13(23): 6338-6345, 2020 Dec 07.
Article em En | MEDLINE | ID: mdl-32196939
Electrochemical studies of CO2 conversion by molecular catalysts are typically carried out in a narrow range of near-ambient CO2 pressures wherein low CO2 solubilities in the liquid phase can limit the rate of CO2 reduction. In this study, five-fold rate enhancements are enabled by pairing CO2 -expanded electrolytes (CXEs), a class of media that accommodate multimolar concentrations of CO2 in organic solvents at modest pressures, with a homogeneous molecular electrocatalyst, [Re(CO)3 (bpy)Cl] (1, bpy=2,2'-bipyridyl). Analysis of cyclic voltammetry data reveals pressure-tunable rate behavior, with first-order kinetics at moderate CO2 pressures giving way to zero-order kinetics at higher pressures. The significant enhancement in the space-time yield of CO demonstrates that CXEs offer a simple yet powerful strategy for unlocking the intrinsic potential of molecular catalysts by mitigating CO2 solubility limitations commonly encountered in conventional liquid electrolytes. Moreover, our findings reveal that 1, a workhorse molecular catalyst, performs with intrinsic kinetic behavior, which is competitive with fast enzymes under optimal conditions in CXEs.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ChemSusChem Assunto da revista: QUIMICA / TOXICOLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ChemSusChem Assunto da revista: QUIMICA / TOXICOLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos