Your browser doesn't support javascript.
loading
Enhanced photoelectrocatalytic degradation of bisphenol a by BiVO4 photoanode coupling with peroxymonosulfate.
Shao, Huixin; Wang, Yanbin; Zeng, Huabin; Zhang, Juanjuan; Wang, Yan; Sillanpää, Mika; Zhao, Xu.
Afiliação
  • Shao H; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
  • Wang Y; School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, PR China.
  • Zeng H; Department of Green Chemistry, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI-50130, Mikkeli, Finland.
  • Zhang J; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
  • Wang Y; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
  • Sillanpää M; Department of Green Chemistry, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI-50130, Mikkeli, Finland.
  • Zhao X; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address: zhaoxu@rcees.ac.cn.
J Hazard Mater ; 394: 121105, 2020 Jul 15.
Article em En | MEDLINE | ID: mdl-32203721
ABSTRACT
Peroxymonosulfate (PMS) was introduced into a photoelectrocatalytic (PEC) system with a bismuth vanadate (BiVO4) photoanode to enhance the PEC oxidation of bisphenol A (BPA). With the addition of 5 mM PMS, the degradation efficiency of 10 mg/L BPA was significantly improved from 24.2% to 100.0% within 120 min and the side reaction of O2 evolution was avoided at a potential as low as 0.25 V. The electron spin resonance and radicals quenching results suggested that photogenerated holes instead of SO4•- and OH were primarily responsible for the BPA degradation. To further explore the role of PMS, a photocatalytic fuel cell with the structure of BiVO4 (photoanode)|10 mg/L BPA|proton exchange membrane (separator)|5 mM PMS|Pt (cathode) was constructed and demonstrated that PMS played a key role as electrons acceptor instead of the precursor of SO4•-. The PEC tests including open-circuit potential, linear sweep voltammetry and electrochemical impedance spectroscopy indicated that a more efficient separation of photogenerated charges was achieved in the PEC process with the help of PMS, thus generating more photogenerated holes for enhanced BPA degradation. This work may provide a novel way to enhance the separation of photogenerated charges at the photoanode.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2020 Tipo de documento: Article