Your browser doesn't support javascript.
loading
The Als3 Cell Wall Adhesin Plays a Critical Role in Human Serum Amyloid A1-Induced Cell Death and Aggregation in Candida albicans.
Gong, Jiao; Bing, Jian; Guan, Guobo; Nobile, Clarissa J; Huang, Guanghua.
Afiliação
  • Gong J; Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
  • Bing J; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
  • Guan G; Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
  • Nobile CJ; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
  • Huang G; Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California, USA.
Article em En | MEDLINE | ID: mdl-32205353
ABSTRACT
Antimicrobial peptides and proteins play critical roles in the host defense against invading pathogens. We recently discovered that recombinantly expressed human and mouse serum amyloid A1 (rhSAA1 and rmSAA1, respectively) proteins have potent antifungal activities against the major human fungal pathogen Candida albicans At high concentrations, rhSAA1 disrupts C. albicans membrane integrity and induces rapid fungal cell death. In the present study, we find that rhSAA1 promotes cell aggregation and targets the C. albicans cell wall adhesin Als3. Inactivation of ALS3 in C. albicans leads to a striking decrease in cell aggregation and cell death upon rhSAA1 treatment, suggesting that Als3 plays a critical role in SAA1 sensing. We further demonstrate that deletion of the transcriptional regulators controlling the expression of ALS3, such as AHR1, BCR1, and EFG1, in C. albicans results in similar effects to that of the als3/als3 mutant upon rhSAA1 treatment. Global gene expression profiling indicates that rhSAA1 has a discernible impact on the expression of cell wall- and metabolism-related genes, suggesting that rhSAA1 treatment could lead to a nutrient starvation effect on C. albicans cells.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Candida albicans / Proteínas Fúngicas Limite: Animals / Humans Idioma: En Revista: Antimicrob Agents Chemother Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Candida albicans / Proteínas Fúngicas Limite: Animals / Humans Idioma: En Revista: Antimicrob Agents Chemother Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China