Your browser doesn't support javascript.
loading
Nephron-Specific Disruption of Polycystin-1 Induces Cyclooxygenase-2-Mediated Blood Pressure Reduction Independent of Cystogenesis.
Lakshmipathi, Jayalakshmi; Gao, Yang; Hu, Chunyan; Stuart, Deborah; Genzen, Jonathan; Ramkumar, Nirupama; Kohan, Donald E.
Afiliação
  • Lakshmipathi J; Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah.
  • Gao Y; Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah.
  • Hu C; Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah.
  • Stuart D; Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah.
  • Genzen J; Department of Pathology, University of Utah Health Center, Salt Lake City, Utah.
  • Ramkumar N; Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah.
  • Kohan DE; Division of Nephrology, University of Utah Health Center, Salt Lake City, Utah donald.kohan@hsc.utah.edu.
J Am Soc Nephrol ; 31(6): 1243-1254, 2020 06.
Article em En | MEDLINE | ID: mdl-32300065
ABSTRACT

BACKGROUND:

Hypertension often occurs before renal function deteriorates in autosomal dominant polycystic kidney disease (ADPKD). It is unknown whether the Pkd1 gene product polycystin-1-the predominant causal factor in ADPKD-itself contributes to ADPKD hypertension independent of cystogenesis.

METHODS:

We induced nephron-specific disruption of the Pkd1 gene in 3-month-old mice and examined them at 4-5 months of age.

RESULTS:

Kidneys from the Pkd1 knockout mice showed no apparent renal cysts, tubule dilation, or increased cell proliferation. Compared with control mice, Pkd1 knockout mice exhibited reduced arterial pressure during high salt intake; this associated with an increased natriuretic, diuretic, and kaliuretic response during the first 2-3 days of salt loading. The lower arterial pressure and enhanced natriuresis during high salt loading in Pkd1 knockout mice were associated with lower urinary nitrite/nitrate excretion and markedly increased urinary PGE2 excretion, whereas GFR, plasma renin concentration, and urinary endothelin-1 excretion were similar between knockout and control mice. Kidney cyclooxygenase-2 protein levels were increased in Pkd1 knockout mice during high salt intake; administration of NS-398, a selective cyclooxygenase-2 inhibitor, abolished the arterial pressure difference between the knockout and control mice during high salt intake. Total kidney Na+/K+/2Cl- cotransporter isoform 2 (NKCC2) levels were greatly reduced in Pkd1 knockout mice fed a high salt diet compared with controls.

CONCLUSIONS:

These studies suggest that nephron polycystin-1 deficiency does not itself contribute to ADPKD hypertension and that it may, in fact, exert a relative salt-wasting effect. The work seems to comprise the first in vivo studies to describe a potential physiologic role for nephron polycystin-1 in the absence of cysts, tubule dilation, or enhanced cell proliferation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pressão Sanguínea / Rim Policístico Autossômico Dominante / Ciclo-Oxigenase 2 / Canais de Cátion TRPP / Néfrons Limite: Animals Idioma: En Revista: J Am Soc Nephrol Assunto da revista: NEFROLOGIA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pressão Sanguínea / Rim Policístico Autossômico Dominante / Ciclo-Oxigenase 2 / Canais de Cátion TRPP / Néfrons Limite: Animals Idioma: En Revista: J Am Soc Nephrol Assunto da revista: NEFROLOGIA Ano de publicação: 2020 Tipo de documento: Article