Your browser doesn't support javascript.
loading
Microscopic susceptibility anisotropy imaging.
Kaden, Enrico; Gyori, Noemi G; Rudrapatna, S Umesh; Barskaya, Irina Y; Dragonu, Iulius; Does, Mark D; Jones, Derek K; Clark, Chris A; Alexander, Daniel C.
Afiliação
  • Kaden E; Centre for Medical Image Computing, University College London, London, UK.
  • Gyori NG; Great Ormond Street Institute of Child Health, University College London, London, UK.
  • Rudrapatna SU; Centre for Medical Image Computing, University College London, London, UK.
  • Barskaya IY; Great Ormond Street Institute of Child Health, University College London, London, UK.
  • Dragonu I; Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK.
  • Does MD; Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.
  • Jones DK; Siemens Healthcare Ltd, Frimley, UK.
  • Clark CA; Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.
  • Alexander DC; Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK.
Magn Reson Med ; 84(5): 2739-2753, 2020 11.
Article em En | MEDLINE | ID: mdl-32378746
ABSTRACT

PURPOSE:

The gradient-echo MR signal in brain white matter depends on the orientation of the fibers with respect to the external magnetic field. To map microstructure-specific magnetic susceptibility in orientationally heterogeneous material, it is thus imperative to regress out unwanted orientation effects.

METHODS:

This work introduces a novel framework, referred to as microscopic susceptibility anisotropy imaging, that disentangles the 2 principal effects conflated in gradient-echo measurements, (a) the susceptibility properties of tissue microenvironments, especially the myelin microstructure, and (b) the axon orientation distribution relative to the magnetic field. Specifically, we utilize information about the orientational tissue structure inferred from diffusion MRI data to factor out the B0 -direction dependence of the frequency difference signal.

RESULTS:

A human pilot study at 3 T demonstrates proxy maps of microscopic susceptibility anisotropy unconfounded by fiber crossings and orientation dispersion as well as magnetic field direction. The developed technique requires only a dual-echo gradient-echo scan acquired at 1 or 2 head orientations with respect to the magnetic field and a 2-shell diffusion protocol achievable on standard scanners within practical scan times.

CONCLUSIONS:

The quantitative recovery of microscopic susceptibility features in the presence of orientational heterogeneity potentially improves the assessment of microstructural tissue integrity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Substância Branca Tipo de estudo: Guideline Limite: Humans Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Substância Branca Tipo de estudo: Guideline Limite: Humans Idioma: En Revista: Magn Reson Med Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido