Your browser doesn't support javascript.
loading
Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation.
Martin, Jack L; Costa, Ana S H; Gruszczyk, Anja V; Beach, Timothy E; Allen, Fay M; Prag, Hiran A; Hinchy, Elizabeth C; Mahbubani, Krishnaa; Hamed, Mazin; Tronci, Laura; Nikitopoulou, Efterpi; James, Andrew M; Krieg, Thomas; Robinson, Alan J; Huang, Margaret M; Caldwell, Stuart T; Logan, Angela; Pala, Laura; Hartley, Richard C; Frezza, Christian; Saeb-Parsy, Kourosh; Murphy, Michael P.
Afiliação
  • Martin JL; Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK.
  • Costa ASH; MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
  • Gruszczyk AV; Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK.
  • Beach TE; MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
  • Allen FM; Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK.
  • Prag HA; MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
  • Hinchy EC; MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
  • Mahbubani K; MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
  • Hamed M; Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK.
  • Tronci L; Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK.
  • Nikitopoulou E; MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
  • James AM; MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
  • Krieg T; MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
  • Robinson AJ; Department of Medicine, University of Cambridge, Cambridge, UK.
  • Huang MM; MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
  • Caldwell ST; Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK.
  • Logan A; MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
  • Pala L; School of Chemistry, University of Glasgow, Glasgow, UK.
  • Hartley RC; MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
  • Frezza C; School of Chemistry, University of Glasgow, Glasgow, UK.
  • Saeb-Parsy K; School of Chemistry, University of Glasgow, Glasgow, UK.
  • Murphy MP; MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
Nat Metab ; 1: 966-974, 2019 09 30.
Article em En | MEDLINE | ID: mdl-32395697
ABSTRACT
During heart transplantation, storage in cold preservation solution is thought to protect the organ by slowing metabolism; by providing osmotic support; and by minimising ischaemia-reperfusion (IR) injury upon transplantation into the recipient1,2. Despite its widespread use our understanding of the metabolic changes prevented by cold storage and how warm ischaemia leads to damage is surprisingly poor. Here, we compare the metabolic changes during warm ischaemia (WI) and cold ischaemia (CI) in hearts from mouse, pig, and human. We identify common metabolic alterations during WI and those affected by CI, thereby elucidating mechanisms underlying the benefits of CI, and how WI causes damage. Succinate accumulation is a major feature within ischaemic hearts across species, and CI slows succinate generation, thereby reducing tissue damage upon reperfusion caused by the production of mitochondrial reactive oxygen species (ROS)3,4. Importantly, the inevitable periods of WI during organ procurement lead to the accumulation of damaging levels of succinate during transplantation, despite cooling organs as rapidly as possible. This damage is ameliorated by metabolic inhibitors that prevent succinate accumulation and oxidation. Our findings suggest how WI and CI contribute to transplant outcome and indicate new therapies for improving the quality of transplanted organs.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão / Transplante de Órgãos / Ácido Succínico Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Nat Metab Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão / Transplante de Órgãos / Ácido Succínico Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Nat Metab Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Reino Unido