Your browser doesn't support javascript.
loading
Structural Determinants of the Dopamine Transporter Regulation Mediated by G Proteins.
Rojas, Genoveva; Orellana, Ivana; Rosales-Rojas, Roberto; García-Olivares, Jennie; Comer, Jeffrey; Vergara-Jaque, Ariela.
Afiliação
  • Rojas G; Center for Bioinformatics and Molecular Simulation, Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile.
  • Orellana I; Center for Bioinformatics and Molecular Simulation, Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile.
  • Rosales-Rojas R; Center for Bioinformatics and Molecular Simulation, Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile.
  • García-Olivares J; Supernus Pharmaceuticals, 9715 Key West Avenue, Rockville, Maryland 20850, United States.
  • Comer J; Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas 66506, United States.
  • Vergara-Jaque A; Center for Bioinformatics and Molecular Simulation, Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile.
J Chem Inf Model ; 60(7): 3577-3586, 2020 07 27.
Article em En | MEDLINE | ID: mdl-32525311
ABSTRACT
Dopamine clearance in the brain is controlled by the dopamine transporter (DAT), a protein residing in the plasma membrane, which drives reuptake of extracellular dopamine into presynaptic neurons. Studies have revealed that the ßγ subunits of heterotrimeric G proteins modulate DAT function through a physical association with the C-terminal region of the transporter. Regulation of neurotransmitter transporters by Gßγ subunits is unprecedented in the literature; therefore, it is interesting to investigate the structural details of this particular protein-protein interaction. Here, we refined the crystal structure of the Drosophila melanogaster DAT (dDAT), modeling de novo the N- and C-terminal domains; subsequently, we used the full-length dDAT structure to generate a comparative model of human DAT (hDAT). Both proteins were assembled with Gß1γ2 subunits employing protein-protein docking, and subsequent molecular dynamics simulations were run to identify the specific interactions governing the formation of the hDATGßγ and dDATGßγ complexes. A [L/F]R[Q/E]R sequence motif containing the residues R588 in hDAT and R587 in dDAT was found as key to bind the Gßγ subunits through electrostatic interactions with a cluster of negatively charged residues located at the top face of the Gß subunit. Alterations of DAT function have been associated with multiple devastating neuropathological conditions; therefore, this work represents a step toward better understanding DAT regulation by signaling proteins, allowing us to predict therapeutic target regions.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Ligação ao GTP / Proteínas de Drosophila / Drosophila melanogaster / Proteínas da Membrana Plasmática de Transporte de Dopamina Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Chile

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Ligação ao GTP / Proteínas de Drosophila / Drosophila melanogaster / Proteínas da Membrana Plasmática de Transporte de Dopamina Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Chile