Your browser doesn't support javascript.
loading
AllesTM: predicting multiple structural features of transmembrane proteins.
Hönigschmid, Peter; Breimann, Stephan; Weigl, Martina; Frishman, Dmitrij.
Afiliação
  • Hönigschmid P; Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus-von-Imhof-Forum 3, 85354, Freising, Germany.
  • Breimann S; Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus-von-Imhof-Forum 3, 85354, Freising, Germany.
  • Weigl M; Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus-von-Imhof-Forum 3, 85354, Freising, Germany.
  • Frishman D; Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus-von-Imhof-Forum 3, 85354, Freising, Germany. d.frishman@wzw.tum.de.
BMC Bioinformatics ; 21(1): 242, 2020 Jun 12.
Article em En | MEDLINE | ID: mdl-32532211
ABSTRACT

BACKGROUND:

This study is motivated by the following three considerations a) the physico-chemical properties of transmembrane (TM) proteins are distinctly different from those of globular proteins, necessitating the development of specialized structure prediction techniques, b) for many structural features no specialized predictors for TM proteins are available at all, and c) deep learning algorithms allow to automate the feature engineering process and thus facilitate the development of multi-target methods for predicting several protein properties at once.

RESULTS:

We present AllesTM, an integrated tool to predict almost all structural features of transmembrane proteins that can be extracted from atomic coordinate data. It blends several machine learning algorithms random forests and gradient boosting machines, convolutional neural networks in their original form as well as those enhanced by dilated convolutions and residual connections, and, finally, long short-term memory architectures. AllesTM outperforms other available methods in predicting residue depth in the membrane, flexibility, topology, relative solvent accessibility in its bound state, while in torsion angles, secondary structure and monomer relative solvent accessibility prediction it lags only slightly behind the currently leading technique SPOT-1D. High accuracy on a multitude of prediction targets and easy installation make AllesTM a one-stop shop for many typical problems in the structural bioinformatics of transmembrane proteins.

CONCLUSIONS:

In addition to presenting a highly accurate prediction method and eliminating the need to install and maintain many different software tools, we also provide a comprehensive overview of the impact of different machine learning algorithms and parameter choices on the prediction performance. AllesTM is freely available at https//github.com/phngs/allestm.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biologia Computacional / Alelos / Proteínas de Membrana Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biologia Computacional / Alelos / Proteínas de Membrana Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha