Your browser doesn't support javascript.
loading
Distinguishing Septal Heart Defects from the Valvular Regurgitation Using Intelligent Phonocardiography.
Gharehbaghi, Arash; Sepehri, Amir A; Babic, Ankica.
Afiliação
  • Gharehbaghi A; Department of Innovation, Design and Technology, Mälardalen University, Sweden.
  • Sepehri AA; CAPIS Biomedical Research and Development Centre, Mon, Belgium.
  • Babic A; Department of Biomedical Engineering, Linköping University, Sweden.
Stud Health Technol Inform ; 270: 178-182, 2020 Jun 16.
Article em En | MEDLINE | ID: mdl-32570370
This paper presents an original machine learning method for extracting diagnostic medical information from heart sound recordings. The method is proposed to be integrated with an intelligent phonocardiography in order to enhance diagnostic value of this technology. The method is tailored to diagnose children with heart septal defects, the pathological condition which can bring irreversible and sometimes fatal consequences to the children. The study includes 115 children referrals to an university hospital, consisting of 6 groups of the individuals: atrial septal defects (10), healthy children with innocent murmur (25), healthy children without any murmur (25), mitral regurgitation (15), tricuspid regurgitation (15), and ventricular septal defect (25). The method is trained to detect the atrial or ventricular septal defects versus the rest of the groups. Accuracy/sensitivity and the structural risk of the method is estimated to be 91.6%/88.4% and 9.89%, using the repeated random sub sampling and the A-Test method, respectively.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Defeitos dos Septos Cardíacos Limite: Child / Humans Idioma: En Revista: Stud Health Technol Inform Assunto da revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Suécia

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Defeitos dos Septos Cardíacos Limite: Child / Humans Idioma: En Revista: Stud Health Technol Inform Assunto da revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Suécia