Your browser doesn't support javascript.
loading
Robustness of CT radiomic features against image discretization and interpolation in characterizing pancreatic neuroendocrine neoplasms.
Loi, Sara; Mori, Martina; Benedetti, Giulia; Partelli, Stefano; Broggi, Sara; Cattaneo, Giovanni Mauro; Palumbo, Diego; Muffatti, Francesca; Falconi, Massimo; De Cobelli, Francesco; Fiorino, Claudio.
Afiliação
  • Loi S; Medical Physics, San Raffaele Scientific Institute, Milano, Italy.
  • Mori M; Medical Physics, San Raffaele Scientific Institute, Milano, Italy.
  • Benedetti G; Radiology, San Raffaele Scientific Institute, Milano, Italy.
  • Partelli S; Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milano, Italy; Università Vita-Salute, Milano, Italy.
  • Broggi S; Medical Physics, San Raffaele Scientific Institute, Milano, Italy.
  • Cattaneo GM; Medical Physics, San Raffaele Scientific Institute, Milano, Italy.
  • Palumbo D; Radiology, San Raffaele Scientific Institute, Milano, Italy.
  • Muffatti F; Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milano, Italy.
  • Falconi M; Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milano, Italy; Università Vita-Salute, Milano, Italy.
  • De Cobelli F; Radiology, San Raffaele Scientific Institute, Milano, Italy; Università Vita-Salute, Milano, Italy.
  • Fiorino C; Medical Physics, San Raffaele Scientific Institute, Milano, Italy. Electronic address: fiorino.claudio@hsr.it.
Phys Med ; 76: 125-133, 2020 Aug.
Article em En | MEDLINE | ID: mdl-32673824
PURPOSE: To explore the variation of the discriminative power of CT radiomic features (RF) against image discretization/interpolation in characterizing pancreatic neuro-endocrine (PanNEN) neoplasms. MATERIALS AND METHODS: Thirty-nine PanNEN patients with pre-surgical high contrast CT available were considered. Image interpolation and discretization parameters were intentionally changed, including pixel size (0.73-2.19 mm2), slice thickness (2-5 mm) and binning (32-128 grey levels) and their combination generated 27 parameter's set. The ability of 69 RF in discriminating post-surgically assessed tumor grade (>G1), positive nodes, metastases and vascular invasion was tested: AUC changes when changing the parameters were quantified for selected RF, significantly associated to each end-point. The analysis was repeated for the corresponding images with contrast medium and in a sub-group of 29/39 patients scanned on a single scanner. RESULTS: The median tumor volume was 1.57 cm3 (16%-84% percentiles: 0.62-34.58 cm3). RF variability against discretization/interpolation parameters was large: only 21/69 RF showed %COV < 20%. Despite this variability, AUC changes were limited for all end-points: with typical AUC values around 0.75-0.85, AUC ranges for the 27 parameter's set were on average 0.062 (1SD:0.037) for all end-points with maximum %COV equal to 5.5% (mean:2.3%). Performances significantly improved when excluding the 5 mm thickness case and fixing the binning to 64 (mean AUC range: 0.036, 1SD:0.019). Using contrast images or limiting the population to single-scanner patients had limited impact on AUC variability. CONCLUSIONS: The discriminative power of CT RF for panNEN is relatively invariant against image interpolation/discretization within a large range of voxel sizes and binning.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Pancreáticas / Interpretação de Imagem Assistida por Computador / Tomografia Computadorizada por Raios X / Tumores Neuroendócrinos Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Phys Med Assunto da revista: BIOFISICA / BIOLOGIA / MEDICINA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Pancreáticas / Interpretação de Imagem Assistida por Computador / Tomografia Computadorizada por Raios X / Tumores Neuroendócrinos Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Phys Med Assunto da revista: BIOFISICA / BIOLOGIA / MEDICINA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Itália