Your browser doesn't support javascript.
loading
Predicting lymphatic filariasis elimination in data-limited settings: A reconstructive computational framework for combining data generation and model discovery.
Smith, Morgan E; Griswold, Emily; Singh, Brajendra K; Miri, Emmanuel; Eigege, Abel; Adelamo, Solomon; Umaru, John; Nwodu, Kenrick; Sambo, Yohanna; Kadimbo, Jonathan; Danyobi, Jacob; Richards, Frank O; Michael, Edwin.
Afiliação
  • Smith ME; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America.
  • Griswold E; The Carter Center, One Copenhill, Atlanta, Georgia, United States of America.
  • Singh BK; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America.
  • Miri E; The Carter Center Nigeria, Jos, Nigeria.
  • Eigege A; The Carter Center Nigeria, Jos, Nigeria.
  • Adelamo S; The Carter Center Nigeria, Jos, Nigeria.
  • Umaru J; The Carter Center Nigeria, Jos, Nigeria.
  • Nwodu K; The Carter Center Nigeria, Jos, Nigeria.
  • Sambo Y; The Carter Center Nigeria, Jos, Nigeria.
  • Kadimbo J; Plateau State Ministry of Health, Jos, Plateau, Nigeria.
  • Danyobi J; Nasarawa State Ministry of Health, Lafia, Nasarawa, Nigeria.
  • Richards FO; The Carter Center, One Copenhill, Atlanta, Georgia, United States of America.
  • Michael E; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America.
PLoS Comput Biol ; 16(7): e1007506, 2020 07.
Article em En | MEDLINE | ID: mdl-32692741
Although there is increasing importance placed on the use of mathematical models for the effective design and management of long-term parasite elimination, it is becoming clear that transmission models are most useful when they reflect the processes pertaining to local infection dynamics as opposed to generalized dynamics. Such localized models must also be developed even when the data required for characterizing local transmission processes are limited or incomplete, as is often the case for neglected tropical diseases, including the disease system studied in this work, viz. lymphatic filariasis (LF). Here, we draw on progress made in the field of computational knowledge discovery to present a reconstructive simulation framework that addresses these challenges by facilitating the discovery of both data and models concurrently in areas where we have insufficient observational data. Using available data from eight sites from Nigeria and elsewhere, we demonstrate that our data-model discovery system is able to estimate local transmission models and missing pre-control infection information using generalized knowledge of filarial transmission dynamics, monitoring survey data, and details of historical interventions. Forecasts of the impacts of interventions carried out in each site made by the models estimated using the reconstructed baseline data matched temporal infection observations and provided useful information regarding when transmission interruption is likely to have occurred. Assessments of elimination and resurgence probabilities based on the models also suggest a protective effect of vector control against the reemergence of LF transmission after stopping drug treatments. The reconstructive computational framework for model and data discovery developed here highlights how coupling models with available data can generate new knowledge about complex, data-limited systems, and support the effective management of disease programs in the face of critical data gaps.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Filariose Linfática / Modelos Estatísticos / Erradicação de Doenças / Modelos Biológicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: Africa Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Filariose Linfática / Modelos Estatísticos / Erradicação de Doenças / Modelos Biológicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: Africa Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos