Your browser doesn't support javascript.
loading
A Structure-Based Mechanism for DNA Entry into the Cohesin Ring.
Higashi, Torahiko L; Eickhoff, Patrik; Sousa, Joana S; Locke, Julia; Nans, Andrea; Flynn, Helen R; Snijders, Ambrosius P; Papageorgiou, George; O'Reilly, Nicola; Chen, Zhuo A; O'Reilly, Francis J; Rappsilber, Juri; Costa, Alessandro; Uhlmann, Frank.
Afiliação
  • Higashi TL; Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
  • Eickhoff P; Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
  • Sousa JS; Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
  • Locke J; Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
  • Nans A; Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK.
  • Flynn HR; Proteomics STP, The Francis Crick Institute, London NW1 1AT, UK.
  • Snijders AP; Proteomics STP, The Francis Crick Institute, London NW1 1AT, UK.
  • Papageorgiou G; Peptide Chemistry STP, The Francis Crick Institute, London NW1 1AT, UK.
  • O'Reilly N; Peptide Chemistry STP, The Francis Crick Institute, London NW1 1AT, UK.
  • Chen ZA; Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany.
  • O'Reilly FJ; Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany.
  • Rappsilber J; Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
  • Costa A; Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK. Electronic address: alessandro.costa@crick.ac.uk.
  • Uhlmann F; Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK. Electronic address: frank.uhlmann@crick.ac.uk.
Mol Cell ; 79(6): 917-933.e9, 2020 09 17.
Article em En | MEDLINE | ID: mdl-32755595
Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Troca de Cromátide Irmã / DNA / Proteínas Cromossômicas não Histona / Cromátides / Proteínas de Ciclo Celular Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Troca de Cromátide Irmã / DNA / Proteínas Cromossômicas não Histona / Cromátides / Proteínas de Ciclo Celular Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2020 Tipo de documento: Article