Your browser doesn't support javascript.
loading
Therapeutic Potential of Chemically Modified miR-489 in Triple-Negative Breast Cancers.
Soung, Young Hwa; Chung, Heesung; Yan, Cecilia; Fesler, Andrew; Kim, Hyungjin; Oh, Eok-Soo; Ju, Jingfang; Chung, Jun.
Afiliação
  • Soung YH; Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA.
  • Chung H; Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA.
  • Yan C; Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea.
  • Fesler A; Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA.
  • Kim H; Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA.
  • Oh ES; Department of Pharmacological Sciences, Stony Brook Medicine, Stony Brook, NY 11794, USA.
  • Ju J; Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea.
  • Chung J; Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA.
Cancers (Basel) ; 12(8)2020 Aug 07.
Article em En | MEDLINE | ID: mdl-32784600
ABSTRACT
Triple-negative breast cancers (TNBCs) lack ER, PR and her2 receptors that are targets of common breast cancer therapies with poor prognosis due to their high rates of metastasis and chemoresistance. Based on our previous studies that epigenetic silencing of a potential metastasis suppressor, arrestin domain-containing 3 (ARRDC3), is linked to the aggressive nature of TNBCs, we identified a sub-group of tumor suppressing miRNAs whose expressions were significantly up-regulated by ARRDC3 over-expression in TNBC cells. Among these tumor suppressing miRs, we found that miR-489 is most anti-proliferative in TNBC cells. miR-489 also blocked DNA damaging responses (DDRs) in TNBC cells. To define the mechanism by which miR-489 inhibits TNBC cell functions, we screened the potential target genes of miR-489 and identified MDC-1 and SUZ-12 as novel target genes of miR-489 in TNBC cells. To further exploit the therapeutic potentials of miR-489 in TNBC models, we chemically modified the guide strand of miR-489 (CMM489) by replacing Uracil with 5-fluorouracil (5-FU) so that tumor suppressor (miR-489) and DNA damaging (5-FU) components are combined into a single agent as a novel drug candidate for TNBCs. Our studies demonstrated that CMM489 shows superior effects over miR-489 or 5-FU in inhibition of TNBC cell proliferation and tumor progression, suggesting its therapeutic efficacy in TNBC models.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Cancers (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Cancers (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos