Your browser doesn't support javascript.
loading
Effects of HMW-GSs on quality related traits in wheat (Triticum aestivum L.) under different water regimes.
Zhao, Jiajia; Zheng, Xingwei; Qiao, Ling; Ge, Chuan; Wu, Bangbang; Zhang, Shuwei; Qiao, Linyi; Feng, Zhiwei; Zheng, Jun.
Afiliação
  • Zhao J; Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China.
  • Zheng X; Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China.
  • Qiao L; Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China.
  • Ge C; Institute of Science and Technology Information of Shanxi, Taiyuan, Shanxi, China.
  • Wu B; Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China.
  • Zhang S; Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China.
  • Qiao L; Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China.
  • Feng Z; Academy of Organic Dry Farming Agricultural Research, Shanxi Agriculture University, Taiyuan, Shanxi, China.
  • Zheng J; Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China.
PLoS One ; 15(8): e0237711, 2020.
Article em En | MEDLINE | ID: mdl-32810182
Alleles at the Glu-1 loci play important roles in the functional properties of wheat flour. The effects of various high-molecular-weight glutenin subunit (HMW-GS) compositions on quality traits and bread-making properties were evaluated using 235 doubled haploid lines (DHs). The experiment was conducted in a split plot design with two water regimes as the main plot treatment, and DH lines as the subplot treatments. Results showed that the presence of subunit pair 5+10 at the Glu-D1 locus, either alone or in combination with others, appears to provide an improvement in quality and bread-making properties. At the Glu-A1 locus, subunit 1 produced a higher Zeleny sedimentation value (Zel) and stretch area (SA) than subunit 2* when subunits 14+15 and 5+10 were expressed at the Glu-B1 and Glu-D1 loci, and 2* had a positive effect on the maximum dough resistance (Rmax) when subunits 14+15 and 5'+12 were expressed at the Glu-B1 and Glu-D1 loci, respectively. Given subunit 1 at the Glu-A1 locus and 5'+12 at the Glu-D1 locus, the effects of Glu-B1 subunits 14+15 on the tractility (Tra), dough stability time (ST), and dough development time (DT) under the well-watered regime were significantly higher than those of Glu-B1 subunits 13+16. However, 13+16 had a positive effect on SA under the rain-fed regime when subunits 2* and 5+10 were expressed at the Glu-A1 and Glu-D1 loci, respectively. Multiple comparisons analysis revealed that the Zel and Rmax of the six subunits and eight HMW-GS compositions were stable under different water regimes. Overall, subunit compositions 1, 13+16 and 5+10 and 1, 14+15 and 5+10 had higher values for quality traits and bread-baking properties under the two water regimes. These results could play a positive guiding role in selecting and popularizing varieties suitable for production and cultivation in local areas.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Triticum / Qualidade dos Alimentos / Subunidades Proteicas / Melhoramento Vegetal / Glutens País/Região como assunto: Asia Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Triticum / Qualidade dos Alimentos / Subunidades Proteicas / Melhoramento Vegetal / Glutens País/Região como assunto: Asia Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China