Your browser doesn't support javascript.
loading
Automated Searching and Identification of Self-Organized Nanostructures.
Gordon, Oliver M; Hodgkinson, Jo E A; Farley, Steff M; Hunsicker, Eugénie L; Moriarty, Philip J.
Afiliação
  • Gordon OM; School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
  • Hodgkinson JEA; School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
  • Farley SM; School of Science, Loughborough University, Loughborough LE11 3TU, United Kingdom.
  • Hunsicker EL; School of Science, Loughborough University, Loughborough LE11 3TU, United Kingdom.
  • Moriarty PJ; School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
Nano Lett ; 20(10): 7688-7693, 2020 10 14.
Article em En | MEDLINE | ID: mdl-32866019
Currently, researchers spend significant time manually searching through large volumes of data produced during scanning probe imaging to identify specific patterns and motifs formed via self-assembly and self-organization. Here, we use a combination of Monte Carlo simulations, general statistics, and machine learning to automatically distinguish several spatially correlated patterns in a mixed, highly varied data set of real AFM images of self-organized nanoparticles. We do this regardless of feature-scale and without the need for manually labeled training data. Provided that the structures of interest can be simulated, the strategy and protocols we describe can be easily adapted to other self-organized systems and data sets.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanoestruturas / Nanopartículas Tipo de estudo: Diagnostic_studies / Health_economic_evaluation Idioma: En Revista: Nano Lett Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanoestruturas / Nanopartículas Tipo de estudo: Diagnostic_studies / Health_economic_evaluation Idioma: En Revista: Nano Lett Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido