Your browser doesn't support javascript.
loading
How the clinical dosage of bone cement biomechanically affects adjacent vertebrae.
Chen, Xu-Shi; Jiang, Jian-Ming; Sun, Pei-Dong; Zhang, Zhao-Fei; Ren, Hai-Long.
Afiliação
  • Chen XS; Department of Spinal Surgery, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China.
  • Jiang JM; Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
  • Sun PD; Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
  • Zhang ZF; Department of Orthopedic Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou, Guangdong, China. hanyangzzf@163.com.
  • Ren HL; Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China. renhlspine@126.com.
J Orthop Surg Res ; 15(1): 370, 2020 Aug 31.
Article em En | MEDLINE | ID: mdl-32867845
ABSTRACT

OBJECTIVE:

This study evaluated the biomechanical changes in the adjacent vertebrae under a physiological load (500 N) when the clinically relevant amount of bone cement was injected into fractured cadaver vertebral bodies.

METHODS:

The embalmed cadaver thoracolumbar specimens in which each vertebral body (T12-L2) had a BMD of < 0.75 g/cm2 were used for the experiment. For establishing a fracture model, the upper one third of the L1 vertebra was performed wedge osteotomy and the superior endplate was kept complete. Stiffness of specimens was measured in different states. Strain of the adjacent vertebral body and intervertebral disc were measured in pre-fracture, post-fracture, and after augmentation by non-contact optical strain measurement system.

RESULTS:

The average amount of bone cement was 4.4 ml (3.8-5.0 ml). The stiffness of after augmentation was significantly higher than the stiffness of post-fracture (p < 0.05), but still lower than pre-fracture stiffness (p < 0.05). After augmentation, the adjacent upper vertebral strain showed no significant difference (p > 0.05) with pre-fracture, while the strain of adjacent lower vertebral body was significantly higher than that before fracture (p < 0.05). In flexion, T12/L1 intervertebral disc strain was significantly greater after augmentation than after the fracture (p < 0.05), but there was no significant difference from that before the fracture (p > 0.05); L1/2 vertebral strain after augmentation was significantly less than that after the fracture (p < 0.05), but there was no significant difference from that before the fracture (p > 0.05).

CONCLUSIONS:

PVP may therefore have partially reversed the abnormal strain state of adjacent vertebral bodies which was caused by fracture.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vértebras Torácicas / Cimentos Ósseos / Fraturas da Coluna Vertebral / Fraturas por Compressão / Vértebras Lombares Limite: Humans Idioma: En Revista: J Orthop Surg Res Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vértebras Torácicas / Cimentos Ósseos / Fraturas da Coluna Vertebral / Fraturas por Compressão / Vértebras Lombares Limite: Humans Idioma: En Revista: J Orthop Surg Res Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China