Your browser doesn't support javascript.
loading
Gold Nanoparticles Radio-Sensitize and Reduce Cell Survival in Lewis Lung Carcinoma.
Pandey, Arvind; Vighetto, Veronica; Di Marzio, Nicola; Ferraro, Francesca; Hirsch, Matteo; Ferrante, Nicola; Mitra, Sankar; Grattoni, Alessandro; Filgueira, Carly S.
Afiliação
  • Pandey A; Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
  • Vighetto V; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
  • Di Marzio N; Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
  • Ferraro F; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
  • Hirsch M; Department of Electronic and Telecommunications, Politecnico di Torino, 10129 Torino, Italy.
  • Ferrante N; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
  • Mitra S; Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
  • Grattoni A; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
  • Filgueira CS; Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
Nanomaterials (Basel) ; 10(9)2020 Aug 30.
Article em En | MEDLINE | ID: mdl-32872626
It has been suggested that particle size plays an important role in determining the genotoxicity of gold nanoparticles (GNPs). The purpose of this study was to compare the potential radio-sensitization effects of two different sized GNPs (3.9 and 37.4 nm) fabricated and examined in vitro in Lewis lung carcinoma (LLC) as a model of non-small cell lung cancer through use of comet and clonogenic assays. After treatment with 2Gy X-ray irradiation, both particle sizes demonstrated increased DNA damage when compared to treatment with particles only and radiation alone. This radio-sensitization was further translated into a reduction in cell survival demonstrated by clonogenicity. This work indicates that GNPs of both sizes induce DNA damage in LLC cells at the tested concentrations, whereas the 37.4 nm particle size treatment group demonstrated greater significance in vitro. The presented data aids in the evaluation of the radiobiological response of Lewis lung carcinoma cells treated with gold nanoparticles.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos