Your browser doesn't support javascript.
loading
Comparison of magnetization transfer-preparation and T2-preparation for dark-blood delayed-enhancement imaging.
Jenista, Elizabeth R; Wendell, David C; Kim, Han W; Rehwald, Wolfgang G; Chen, Enn-Ling; Darty, Stephen N; Smith, Logan R; Azevedo, Clerio F; Parker, Michele A; Kim, Raymond J.
Afiliação
  • Jenista ER; Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina.
  • Wendell DC; Division of Cardiology, Duke University Medical Center, Durham, North Carolina.
  • Kim HW; Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina.
  • Rehwald WG; Division of Cardiology, Duke University Medical Center, Durham, North Carolina.
  • Chen EL; Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina.
  • Darty SN; Division of Cardiology, Duke University Medical Center, Durham, North Carolina.
  • Smith LR; Siemens Healthineers, Malvern, Pennsylvania.
  • Azevedo CF; Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina.
  • Parker MA; Division of Cardiology, Duke University Medical Center, Durham, North Carolina.
  • Kim RJ; Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina.
NMR Biomed ; 33(11): e4396, 2020 11.
Article em En | MEDLINE | ID: mdl-32875674
ABSTRACT
Recently developed dark-blood techniques such as Flow-Independent Dark-blood DeLayed Enhancement (FIDDLE) allow simultaneous visualization of tissue contrast-enhancement and blood-pool suppression. Critical to FIDDLE is the magnetization preparation, which accentuates differences between myocardium and blood-pool. Here, we compared magnetization transfer (MT)-preparation and T2-preparation for use with FIDDLE. Variants of FIDDLE were developed with MT- or T2-preparation modules and tested in 35 patients (11 at 1.5 T, 24 at 3 T). Images were acquired with each FIDDLE variant in an interleaved fashion 10 minutes after gadolinium administration with otherwise identical acquisition parameters. Images were visually and quantitatively assessed for artifacts and differences in right ventricle to left ventricle (RV-to-LV) blood-pool suppression. Bright artifacts, reflecting incomplete blood-pool suppression, were frequently observed in the left atrium with T2-preparation FIDDLE at 1.5 and 3 T (82% and up to 100% of patients, respectively). MT-preparation FIDDLE resulted in fewer patients with artifacts (0% at 1.5 T, 22% at 3 T; P < .01). Left atrial blood-pool signal was significantly more homogeneous with MT-preparation than with T2-preparation at 1.5 and 3 T (P < .001 for all comparisons). Visibly different RV-to-LV blood-pool suppression was observed with T2-preparation in 36% of patients at 1.5 T and up to 94% at 3 T. In these patients, RV blood-pool signal was elevated, reducing the conspicuity of the myocardial-RV blood-pool border. Conversely, there were no visible differences in RV-to-LV blood-pool suppression with MT-preparation. Quantitative assessment of differences in blood-pool suppression and blood-pool artifacts was consistent with visual analyses. We conclude that for dark blood-blood delayed-enhancement imaging of the heart, MT-preparation results in fewer bright blood-pool artifacts and more uniform blood-pool suppression than T2-preparation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sangue / Imageamento por Ressonância Magnética Limite: Adult / Humans Idioma: En Revista: NMR Biomed Assunto da revista: DIAGNOSTICO POR IMAGEM / MEDICINA NUCLEAR Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sangue / Imageamento por Ressonância Magnética Limite: Adult / Humans Idioma: En Revista: NMR Biomed Assunto da revista: DIAGNOSTICO POR IMAGEM / MEDICINA NUCLEAR Ano de publicação: 2020 Tipo de documento: Article