Electric field-induced chiral d + id superconductivity in AA-stacked bilayer graphene: a quantum Monte Carlo study.
J Phys Condens Matter
; 33(2): 025601, 2021 Jan 13.
Article
em En
| MEDLINE
| ID: mdl-32906113
Using the constrained-path quantum Monte Carlo method, we systematically study the half-filled Hubbard model on AA-stacked honeycomb lattice. Our simulations demonstrate that a dominant chiral d + id wave superconductivity can be induced by a perpendicular electric field. At a fixed electric field, the effective pairing interaction of chiral d + id superconductivity exhibits an increasing behavior with increasing the on-site Coulomb interaction. We attribute the electric field-induced d + id superconductivity to an increased density of states near the Fermi energy and robust antiferromagnetic spin correlation upon turning on electric field. Our results strongly suggest that the AA-stacked graphene system is a good candidate for chiral d + id superconductor.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Phys Condens Matter
Assunto da revista:
BIOFISICA
Ano de publicação:
2021
Tipo de documento:
Article