Your browser doesn't support javascript.
loading
Fluid Reservoir Thickness and Corneal Edema during Open-eye Scleral Lens Wear.
Fisher, Damien; Collins, Michael J; Vincent, Stephen J.
Afiliação
  • Fisher D; Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia.
Optom Vis Sci ; 97(9): 683-689, 2020 09.
Article em En | MEDLINE | ID: mdl-32932398
ABSTRACT

SIGNIFICANCE:

There is debate concerning corneal oxygenation during scleral lens wear due to the potential additive hypoxic effect of a lens plus a fluid reservoir. This study investigated the agreement between theoretical models and empirical measurements of scleral lens-induced corneal edema with respect to central fluid reservoir thickness.

PURPOSE:

The purpose of this study was to examine the effect of altering the fluid reservoir thickness on central corneal edema during short-term open-eye scleral lens wear and to compare these empirical measurements with predictive theoretical models.

METHODS:

Ten participants (age, 30 ± 4 years) with normal corneas wore highly oxygen-permeable scleral lenses (141 Dk ×10 cm O2 (cm)/[(s) (cm) (mmHg)]) on separate days with either a low (mean, 144; 95% confidence interval [CI], 127 to 160 µm), medium (mean, 487; 95% CI, 443 to 532 µm), or high (mean, 726; 95% CI, 687 to 766 µm) initial fluid reservoir thickness. Epithelial, stromal, and total corneal edema were measured using high-resolution optical coherence tomography after 90 minutes of wear, before lens removal. Data were calculated or extracted from published theoretical models of scleral lens-induced corneal edema for comparison.

RESULTS:

Scleral lens-induced central corneal edema was stromal in nature and increased with increasing fluid reservoir thickness; mean total corneal edema was 0.69% (95% CI, 0.34 to 1.04%), 1.81% (95% CI, 1.22 to 2.40%), and 2.11% (95% CI, 1.58 to 2.65%) for the low, medium, and high thickness groups, respectively. No significant difference in corneal edema was observed between the medium and high fluid reservoir thickness groups (P = .37). "Resistance in series" oxygen modeling overestimated the corneal edema observed for fluid reservoir thickness values greater than 400 µm.

CONCLUSIONS:

Scleral lens-induced central corneal edema increases with increasing reservoir thickness, but plateaus at a thickness of around 600 µm, in agreement with recent theoretical modeling that incorporates factors related to corneal metabolism.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esclera / Lágrimas / Edema da Córnea / Ajuste de Prótese / Lentes de Contato Tipo de estudo: Prognostic_studies Limite: Adult / Female / Humans / Male Idioma: En Revista: Optom Vis Sci Assunto da revista: OPTOMETRIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esclera / Lágrimas / Edema da Córnea / Ajuste de Prótese / Lentes de Contato Tipo de estudo: Prognostic_studies Limite: Adult / Female / Humans / Male Idioma: En Revista: Optom Vis Sci Assunto da revista: OPTOMETRIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Austrália