Your browser doesn't support javascript.
loading
Microengineered poly(HEMA) hydrogels for wearable contact lens biosensing.
Chen, Yihang; Zhang, Shiming; Cui, Qingyu; Ni, Jiahua; Wang, Xiaochen; Cheng, Xuanbing; Alem, Halima; Tebon, Peyton; Xu, Chun; Guo, Changliang; Nasiri, Rohollah; Moreddu, Rosalia; Yetisen, Ali K; Ahadian, Samad; Ashammakhi, Nureddin; Emaminejad, Sam; Jucaud, Vadim; Dokmeci, Mehmet R; Khademhosseini, Ali.
Afiliação
  • Chen Y; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Materials Science and Engineering, University of California-Lo
  • Zhang S; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Ange
  • Cui Q; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
  • Ni J; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Ange
  • Wang X; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Ange
  • Cheng X; Department of Materials Science and Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Electrical and Computer Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.
  • Alem H; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Ange
  • Tebon P; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Ange
  • Xu C; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Ange
  • Guo C; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
  • Nasiri R; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Ange
  • Moreddu R; School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
  • Yetisen AK; Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
  • Ahadian S; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Ange
  • Ashammakhi N; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Ange
  • Emaminejad S; Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA. szhang@eee.hku.hk khademh@terasaki.org and Department of Electrical and Computer Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.
  • Jucaud V; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
  • Dokmeci MR; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA and
  • Khademhosseini A; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Ange
Lab Chip ; 20(22): 4205-4214, 2020 11 10.
Article em En | MEDLINE | ID: mdl-33048069
Microchannels in hydrogels play an essential role in enabling a smart contact lens. However, microchannels have rarely been created in commercial hydrogel contact lenses due to their sensitivity to conventional microfabrication techniques. Here, we report the fabrication of microchannels in poly(2-hydroxyethyl methacrylate) (poly(HEMA)) hydrogels that are used in commercial contact lenses with a three-dimensional (3D) printed mold. We investigated the corresponding capillary flow behaviors in these microchannels. We observed different capillary flow regimes in these microchannels, depending on their hydration level. In particular, we found that a peristaltic pressure could reinstate flow in a dehydrated channel, indicating that the motion of eye-blinking may help tears flow in a microchannel-containing contact lens. Colorimetric pH and electrochemical Na+ sensing capabilities were demonstrated in these microchannels. This work paves the way for the development of microengineered poly(HEMA) hydrogels for various biomedical applications such as eye-care and wearable biosensing.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Lentes de Contato / Dispositivos Eletrônicos Vestíveis Idioma: En Revista: Lab Chip Assunto da revista: BIOTECNOLOGIA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Lentes de Contato / Dispositivos Eletrônicos Vestíveis Idioma: En Revista: Lab Chip Assunto da revista: BIOTECNOLOGIA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article