Your browser doesn't support javascript.
loading
Desmosome architecture derived from molecular dynamics simulations and cryo-electron tomography.
Sikora, Mateusz; Ermel, Utz H; Seybold, Anna; Kunz, Michael; Calloni, Giulia; Reitz, Julian; Vabulas, R Martin; Hummer, Gerhard; Frangakis, Achilleas S.
Afiliação
  • Sikora M; Theoretical Biophysics Department, Max Planck Institute for Biophysics, 60438 Frankfurt, Germany.
  • Ermel UH; Faculty of Physics, University of Vienna, 1090 Vienna, Austria.
  • Seybold A; Buchmann Institute for Molecular Life Sciences, 60438 Frankfurt, Germany.
  • Kunz M; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt, Germany.
  • Calloni G; Buchmann Institute for Molecular Life Sciences, 60438 Frankfurt, Germany.
  • Reitz J; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt, Germany.
  • Vabulas RM; Buchmann Institute for Molecular Life Sciences, 60438 Frankfurt, Germany.
  • Hummer G; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt, Germany.
  • Frangakis AS; Buchmann Institute for Molecular Life Sciences, 60438 Frankfurt, Germany.
Proc Natl Acad Sci U S A ; 117(44): 27132-27140, 2020 11 03.
Article em En | MEDLINE | ID: mdl-33067392
ABSTRACT
Desmosomes are cell-cell junctions that link tissue cells experiencing intense mechanical stress. Although the structure of the desmosomal cadherins is known, the desmosome architecture-which is essential for mediating numerous functions-remains elusive. Here, we recorded cryo-electron tomograms (cryo-ET) in which individual cadherins can be discerned; they appear variable in shape, spacing, and tilt with respect to the membrane. The resulting sub-tomogram average reaches a resolution of ∼26 Å, limited by the inherent flexibility of desmosomes. To address this challenge typical of dynamic biological assemblies, we combine sub-tomogram averaging with atomistic molecular dynamics (MD) simulations. We generate models of possible cadherin arrangements and perform an in silico screening according to biophysical and structural properties extracted from MD simulation trajectories. We find a truss-like arrangement of cadherins that resembles the characteristic footprint seen in the electron micrograph. The resulting model of the desmosomal architecture explains their unique biophysical properties and strength.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Desmossomos / Tomografia com Microscopia Eletrônica Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Desmossomos / Tomografia com Microscopia Eletrônica Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha