Free-breathing simultaneous myocardial T1 and T2 mapping with whole left ventricle coverage.
Magn Reson Med
; 85(3): 1308-1321, 2021 03.
Article
em En
| MEDLINE
| ID: mdl-33078443
PURPOSE: To develop a free-breathing sequence, that is, Multislice Joint T1 -T2 , for simultaneous measurement of myocardial T1 and T2 for multiple slices to achieve whole left-ventricular coverage. METHODS: Multislice Joint T1 -T2 adopts slice-interleaved acquisition to collect 10 single-shot electrocardiogram-triggered images for each slice prepared by saturation and T2 preparation to simultaneously estimate myocardial T1 and T2 and achieve whole left-ventricular coverage. Prospective slice-tracking using a respiratory navigator and retrospective image registration are used to reduce through-plane and in-plane motion, respectively. Multislice Joint T1 -T2 was validated through numerical simulations and phantom and in vivo experiments, and compared with saturation-recovery single-shot acquisition and T2 -prepared balanced Steady-State Free Precession (T2 -prep SSFP) sequences. RESULTS: Phantom T1 and T2 from Multislice Joint T1 -T2 had good accuracy and precision, and were insensitive to heart rate. Multislice Joint T1 -T2 yielded T1 and T2 maps of nine left-ventricular slices in 1.4 minutes. The mean left-ventricular T1 difference between saturation-recovery single-shot acquisition and Multislice Joint T1 -T2 across healthy subjects and patients was 191 ms (1564 ± 60 ms versus 1373 ± 50 ms; P < .05) and 111 ms (1535 ± 49 ms vs 1423 ± 49 ms; P < .05), respectively. The mean difference in left-ventricular T2 between T2 -prep SSFP and Multislice Joint T1 -T2 across healthy subjects and patients was -6.3 ms (42.4 ± 1.4 ms vs 48.7 ± 2.5; P < .05) and -5.7 ms (41.6 ± 2.5 ms vs 47.3 ± 2.7; P < .05), respectively. CONCLUSION: Multislice Joint T1 -T2 enables quantification of whole left-ventricular T1 and T2 during free breathing within a clinically feasible scan time of less than 2 minutes.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Interpretação de Imagem Assistida por Computador
/
Ventrículos do Coração
Tipo de estudo:
Observational_studies
Limite:
Humans
Idioma:
En
Revista:
Magn Reson Med
Assunto da revista:
DIAGNOSTICO POR IMAGEM
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Estados Unidos