Your browser doesn't support javascript.
loading
Selective synthetic augmentation with HistoGAN for improved histopathology image classification.
Xue, Yuan; Ye, Jiarong; Zhou, Qianying; Long, L Rodney; Antani, Sameer; Xue, Zhiyun; Cornwell, Carl; Zaino, Richard; Cheng, Keith C; Huang, Xiaolei.
Afiliação
  • Xue Y; College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA.
  • Ye J; College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA.
  • Zhou Q; College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA.
  • Long LR; Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD 20892, USA.
  • Antani S; Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD 20892, USA.
  • Xue Z; Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD 20892, USA.
  • Cornwell C; Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD 20892, USA.
  • Zaino R; Department of Pathology, Penn State Health Milton S. Hershey Medical Center and Penn State College Of Medicine, Hershey, PA 17033, USA.
  • Cheng KC; Department of Pathology, Penn State Health Milton S. Hershey Medical Center and Penn State College Of Medicine, Hershey, PA 17033, USA.
  • Huang X; College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address: sharon.x.huang@psu.edu.
Med Image Anal ; 67: 101816, 2021 01.
Article em En | MEDLINE | ID: mdl-33080509
ABSTRACT
Histopathological analysis is the present gold standard for precancerous lesion diagnosis. The goal of automated histopathological classification from digital images requires supervised training, which requires a large number of expert annotations that can be expensive and time-consuming to collect. Meanwhile, accurate classification of image patches cropped from whole-slide images is essential for standard sliding window based histopathology slide classification methods. To mitigate these issues, we propose a carefully designed conditional GAN model, namely HistoGAN, for synthesizing realistic histopathology image patches conditioned on class labels. We also investigate a novel synthetic augmentation framework that selectively adds new synthetic image patches generated by our proposed HistoGAN, rather than expanding directly the training set with synthetic images. By selecting synthetic images based on the confidence of their assigned labels and their feature similarity to real labeled images, our framework provides quality assurance to synthetic augmentation. Our models are evaluated on two datasets a cervical histopathology image dataset with limited annotations, and another dataset of lymph node histopathology images with metastatic cancer. Here, we show that leveraging HistoGAN generated images with selective augmentation results in significant and consistent improvements of classification performance (6.7% and 2.8% higher accuracy, respectively) for cervical histopathology and metastatic cancer datasets.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Limite: Humans Idioma: En Revista: Med Image Anal Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Limite: Humans Idioma: En Revista: Med Image Anal Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos