Your browser doesn't support javascript.
loading
Predicting brain age with complex networks: From adolescence to adulthood.
Bellantuono, Loredana; Marzano, Luca; La Rocca, Marianna; Duncan, Dominique; Lombardi, Angela; Maggipinto, Tommaso; Monaco, Alfonso; Tangaro, Sabina; Amoroso, Nicola; Bellotti, Roberto.
Afiliação
  • Bellantuono L; Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy.
  • Marzano L; Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy.
  • La Rocca M; University of Southern California, Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, United States.
  • Duncan D; University of Southern California, Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, United States.
  • Lombardi A; Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy.
  • Maggipinto T; Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy.
  • Monaco A; Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy. Electronic address: alfonso.monaco@ba.infn.it.
  • Tangaro S; Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy; Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Universitá degli Studi di Bari Aldo Moro, Bari, Italy.
  • Amoroso N; Dipartimento di Farmacia - Scienze del Farmaco, Universitá degli Studi di Bari Aldo Moro, Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy.
  • Bellotti R; Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Bari, Italy; Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy.
Neuroimage ; 225: 117458, 2021 01 15.
Article em En | MEDLINE | ID: mdl-33099008
In recent years, several studies have demonstrated that machine learning and deep learning systems can be very useful to accurately predict brain age. In this work, we propose a novel approach based on complex networks using 1016 T1-weighted MRI brain scans (in the age range 7-64years). We introduce a structural connectivity model of the human brain: MRI scans are divided in rectangular boxes and Pearson's correlation is measured among them in order to obtain a complex network model. Brain connectivity is then characterized through few and easy-to-interpret centrality measures; finally, brain age is predicted by feeding a compact deep neural network. The proposed approach is accurate, robust and computationally efficient, despite the large and heterogeneous dataset used. Age prediction accuracy, in terms of correlation between predicted and actual age r=0.89and Mean Absolute Error MAE =2.19years, compares favorably with results from state-of-the-art approaches. On an independent test set including 262 subjects, whose scans were acquired with different scanners and protocols we found MAE =2.52. The only imaging analysis steps required in the proposed framework are brain extraction and linear registration, hence robust results are obtained with a low computational cost. In addition, the network model provides a novel insight on aging patterns within the brain and specific information about anatomical districts displaying relevant changes with aging.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Envelhecimento / Desenvolvimento Infantil / Desenvolvimento do Adolescente / Transtorno do Espectro Autista / Aprendizado Profundo Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Adolescent / Adult / Child / Female / Humans / Male / Middle aged Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Envelhecimento / Desenvolvimento Infantil / Desenvolvimento do Adolescente / Transtorno do Espectro Autista / Aprendizado Profundo Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Adolescent / Adult / Child / Female / Humans / Male / Middle aged Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália