Your browser doesn't support javascript.
loading
Yeast Rpn4 Links the Proteasome and DNA Repair via RAD52 Regulation.
Spasskaya, Daria S; Nadolinskaia, Nonna I; Tutyaeva, Vera V; Lysov, Yuriy P; Karpov, Vadim L; Karpov, Dmitry S.
Afiliação
  • Spasskaya DS; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia.
  • Nadolinskaia NI; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
  • Tutyaeva VV; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia.
  • Lysov YP; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
  • Karpov VL; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
  • Karpov DS; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia.
Int J Mol Sci ; 21(21)2020 Oct 30.
Article em En | MEDLINE | ID: mdl-33143019
ABSTRACT
Environmental and intracellular factors often damage DNA, but multiple DNA repair pathways maintain genome integrity. In yeast, the 26S proteasome and its transcriptional regulator and substrate Rpn4 are involved in DNA damage resistance. Paradoxically, while proteasome dysfunction may induce hyper-resistance to DNA-damaging agents, Rpn4 malfunction sensitizes yeasts to these agents. Previously, we proposed that proteasome inhibition causes Rpn4 stabilization followed by the upregulation of Rpn4-dependent DNA repair genes and pathways. Here, we aimed to elucidate the key Rpn4 targets responsible for DNA damage hyper-resistance in proteasome mutants. We impaired the Rpn4-mediated regulation of candidate genes using the CRISPR/Cas9 system and tested the sensitivity of mutant strains to 4-NQO, MMS and zeocin. We found that the separate or simultaneous deregulation of 19S or 20S proteasome subcomplexes induced MAG1, DDI1, RAD23 and RAD52 in an Rpn4-dependent manner. Deregulation of RAD23, DDI1 and RAD52 sensitized yeast to DNA damage. Genetic, epigenetic or dihydrocoumarin-mediated RAD52 repression restored the sensitivity of the proteasome mutants to DNA damage. Our results suggest that the Rpn4-mediated overexpression of DNA repair genes, especially RAD52, defines the DNA damage hyper-resistant phenotype of proteasome mutants. The developed yeast model is useful for characterizing drugs that reverse the DNA damage hyper-resistance phenotypes of cancers.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Fatores de Transcrição / Regulação Fúngica da Expressão Gênica / Proteínas de Saccharomyces cerevisiae / Complexo de Endopeptidases do Proteassoma / Proteínas de Ligação a DNA / Reparo do DNA / Proteína Rad52 de Recombinação e Reparo de DNA Tipo de estudo: Prognostic_studies Idioma: En Revista: Int J Mol Sci Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Federação Russa

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Fatores de Transcrição / Regulação Fúngica da Expressão Gênica / Proteínas de Saccharomyces cerevisiae / Complexo de Endopeptidases do Proteassoma / Proteínas de Ligação a DNA / Reparo do DNA / Proteína Rad52 de Recombinação e Reparo de DNA Tipo de estudo: Prognostic_studies Idioma: En Revista: Int J Mol Sci Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Federação Russa