Your browser doesn't support javascript.
loading
Cellular Control of Viscosity Counters Changes in Temperature and Energy Availability.
Persson, Laura B; Ambati, Vardhaan S; Brandman, Onn.
Afiliação
  • Persson LB; Department of Biology, Stanford University, Stanford, CA 94305, USA.
  • Ambati VS; Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.
  • Brandman O; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA. Electronic address: onn@stanford.edu.
Cell ; 183(6): 1572-1585.e16, 2020 12 10.
Article em En | MEDLINE | ID: mdl-33157040
Cellular functioning requires the orchestration of thousands of molecular interactions in time and space. Yet most molecules in a cell move by diffusion, which is sensitive to external factors like temperature. How cells sustain complex, diffusion-based systems across wide temperature ranges is unknown. Here, we uncover a mechanism by which budding yeast modulate viscosity in response to temperature and energy availability. This "viscoadaptation" uses regulated synthesis of glycogen and trehalose to vary the viscosity of the cytosol. Viscoadaptation functions as a stress response and a homeostatic mechanism, allowing cells to maintain invariant diffusion across a 20°C temperature range. Perturbations to viscoadaptation affect solubility and phase separation, suggesting that viscoadaptation may have implications for multiple biophysical processes in the cell. Conditions that lower ATP trigger viscoadaptation, linking energy availability to rate regulation of diffusion-controlled processes. Viscoadaptation reveals viscosity to be a tunable property for regulating diffusion-controlled processes in a changing environment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Temperatura / Metabolismo Energético Tipo de estudo: Prognostic_studies Idioma: En Revista: Cell Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Temperatura / Metabolismo Energético Tipo de estudo: Prognostic_studies Idioma: En Revista: Cell Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos