Your browser doesn't support javascript.
loading
Modeling Patient-Informed Liver Contrast Perfusion in Contrast-enhanced Computed Tomography.
Setiawan, Hananiel; Ria, Francesco; Abadi, Ehsan; Fu, Wanyi; Smith, Taylor B; Samei, Ehsan.
Afiliação
  • Ria F; From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology.
  • Abadi E; From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology.
J Comput Assist Tomogr ; 44(6): 882-886, 2020.
Article em En | MEDLINE | ID: mdl-33196597
OBJECTIVE: To determine the correlation between patient attributes and contrast enhancement in liver parenchyma and demonstrate the potential for patient-informed prediction and optimization of contrast enhancement in liver imaging. METHODS: The study included 418 chest/abdomen/pelvis computed tomography scans, with 75% to 25% training-testing split. Two regression models were built to predict liver parenchyma contrast enhancement over time: first model (model A) utilized patient attributes (height, weight, sex, age, bolus volume, injection rate, scan times, body mass index, lean body mass) and bolus-tracking data. A second model (model B) only used the patient attributes. Pearson coefficient was used to assess predictive accuracy. RESULTS: Weight- and height-related features were found to be statistically significant predictors (P < 0.05), weight being the strongest. Of the 2 models, model A (r = 0.75) showed greater accuracy than model B (r = 0.42). CONCLUSIONS: Patient attributes can be used to build prediction model for liver parenchyma contrast enhancement. The model can have utility in optimization and improved consistency in contrast-enhanced liver imaging.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estatura / Peso Corporal / Intensificação de Imagem Radiográfica / Tomografia Computadorizada por Raios X / Meios de Contraste / Fígado Tipo de estudo: Prognostic_studies Limite: Female / Humans / Male / Middle aged Idioma: En Revista: J Comput Assist Tomogr Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estatura / Peso Corporal / Intensificação de Imagem Radiográfica / Tomografia Computadorizada por Raios X / Meios de Contraste / Fígado Tipo de estudo: Prognostic_studies Limite: Female / Humans / Male / Middle aged Idioma: En Revista: J Comput Assist Tomogr Ano de publicação: 2020 Tipo de documento: Article