Your browser doesn't support javascript.
loading
Temperature-Triggered/Switchable Thermal Conductivity of Epoxy Resins.
Windberger, Matthias Sebastian; Dimitriou, Evgenia; Rendl, Sarah; Wewerka, Karin; Wiesbrock, Frank.
Afiliação
  • Windberger MS; Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria.
  • Dimitriou E; Institute for Chemistry and Technology of Materials, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria.
  • Rendl S; Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria.
  • Wewerka K; Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria.
  • Wiesbrock F; Institute for Electron Microscopy and Nanoanalysis and Center for Electron Microscopy, Graz University of Technology, NAWI Graz, Steyrergasse 17, 8010 Graz, Austria.
Polymers (Basel) ; 13(1)2020 Dec 26.
Article em En | MEDLINE | ID: mdl-33375238
ABSTRACT
The pronouncedly low thermal conductivity of polymers in the range of 0.1-0.2 W m-1 K-1 is a limiting factor for their application as an insulating layer in microelectronics that exhibit continuously higher power-to-volume ratios. Two strategies can be applied to increase the thermal conductivity of polymers; that is, compounding with thermally conductive inorganic materials as well as blending with aromatic units arranged by the principle of π-π stacking. In this study, both strategies were investigated and compared on the example of epoxy-amine resins of bisphenol A diglycidyl ether (BADGE) and 1,2,7,8-diepoxyoctane (DEO), respectively. These two diepoxy compounds were cured with mixtures of the diamines isophorone diamine (IPDA) and o-dianisidine (DAN). The epoxy-amine resins were cured without filler and with 5 wt.-% of SiO2 nanoparticles. Enhanced thermal conductivity in the range of 0.4 W·m-1·K-1 was observed exclusively in DEO-based polymer networks that were cured with DAN (and do not contain SiO2 fillers). This observation is argued to originate from π-π stacking of the aromatic units of DAN enabled by the higher flexibility of the aliphatic carbon chain of DEO compared with that of BADGE. The enhanced thermal conductivity occurs only at temperatures above the glass-transition point and only if no inorganic fillers, which disrupt the π-π stacking of the aromatic groups, are present. In summary, it can be argued that the bisphenol-free epoxy-amine resin with an epoxy compound derivable from natural resources shows favorably higher thermal conductivity in comparison with the petrol-based bisphenol-based epoxy/amine resins.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Polymers (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Áustria

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Polymers (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Áustria