Your browser doesn't support javascript.
loading
Jasmonic acid-mediated enhanced regulation of oxidative, glyoxalase defense system and reduced chromium uptake contributes to alleviation of chromium (VI) toxicity in choysum (Brassica parachinensis L.).
Kamran, Muhammad; Wang, Dan; Alhaithloul, Haifa Abdulaziz Sakit; Alghanem, Suliman Mohammed; Aftab, Tariq; Xie, Kaizhi; Lu, Yusheng; Shi, Chaohong; Sun, Jie; Gu, Wenjie; Xu, Peizhi; Soliman, Mona Hassan.
Afiliação
  • Kamran M; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640
  • Wang D; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640
  • Alhaithloul HAS; Biology Department, College of Science, Jouf University, Sakaka 2014, Kingdom of Saudi Arabia.
  • Alghanem SM; Biology Department, Faculty of Science, Tabuk University, Tabuk 71491, Kingdom of Saudi Arabia.
  • Aftab T; Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
  • Xie K; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640
  • Lu Y; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640
  • Shi C; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640
  • Sun J; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640
  • Gu W; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640
  • Xu P; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640
  • Soliman MH; Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Kingdom of Saudi Arabia.
Ecotoxicol Environ Saf ; 208: 111758, 2021 Jan 15.
Article em En | MEDLINE | ID: mdl-33396081
ABSTRACT
The cultivation of leafy vegetables on metal contaminated soil embodies a serious threat to yield and quality. In the present study, the potential role of exogenous jasmonic acid (JA; 0, 5, 10, and 20 µM) on mitigating chromium toxicity (Cr; 0, 150, and 300 µM) was investigated in choysum (Brassica parachinensis L.). With exposure to increasing Cr stress levels, a dose-dependent decline in growth, photosynthesis, and physio-biochemical attributes of choysum plants was observed. An increase in Cr levels also resulted in oxidative stress closely associated with higher lipoxygenase activity (LOX), hydrogen peroxide (H2O2) generation, lipid peroxidation (MDA), and methylglyoxal (MG) levels. Exogenous application of JA alleviated the Cr-induced phytotoxic effects on photosynthetic pigments, gas exchange parameters, and restored growth of choysum plants. While exposed to Cr stress, JA supplementation induced plant defense system via enhanced regulation of antioxidant enzymes, ascorbate and glutathione pool, and the glyoxalase system enzymes. The coordinated regulation of antioxidant and glyoxalase systems expressively suppressed the oxidative and carbonyl stress at both Cr stress levels. More importantly, JA restored the mineral nutrient contents, restricted Cr uptake, and accumulation in roots and shoots of choysum plants when compared to the only Cr-stressed plants. Overall, the application of JA2 treatment (10 µM JA) was more effective and counteracted the detrimental effects of 150 µM Cr stress by restoring the growth and physio-biochemical attributes to the level of control plants, while partially mitigated the detrimental effects of 300 µM Cr stress. Hence, JA application might be considered as an effective approach for minimizing Cr uptake and its detrimental effects in choysum plants grown on contaminated soils.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Brassica / Cromo / Ciclopentanos / Oxilipinas / Antioxidantes Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Brassica / Cromo / Ciclopentanos / Oxilipinas / Antioxidantes Idioma: En Revista: Ecotoxicol Environ Saf Ano de publicação: 2021 Tipo de documento: Article