Your browser doesn't support javascript.
loading
V-pipe: a computational pipeline for assessing viral genetic diversity from high-throughput data.
Posada-Céspedes, Susana; Seifert, David; Topolsky, Ivan; Jablonski, Kim Philipp; Metzner, Karin J; Beerenwinkel, Niko.
Afiliação
  • Posada-Céspedes S; Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
  • Seifert D; SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.
  • Topolsky I; Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
  • Jablonski KP; SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.
  • Metzner KJ; Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
  • Beerenwinkel N; SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland.
Bioinformatics ; 37(12): 1673-1680, 2021 Jul 19.
Article em En | MEDLINE | ID: mdl-33471068
MOTIVATION: High-throughput sequencing technologies are used increasingly not only in viral genomics research but also in clinical surveillance and diagnostics. These technologies facilitate the assessment of the genetic diversity in intra-host virus populations, which affects transmission, virulence and pathogenesis of viral infections. However, there are two major challenges in analysing viral diversity. First, amplification and sequencing errors confound the identification of true biological variants, and second, the large data volumes represent computational limitations. RESULTS: To support viral high-throughput sequencing studies, we developed V-pipe, a bioinformatics pipeline combining various state-of-the-art statistical models and computational tools for automated end-to-end analyses of raw sequencing reads. V-pipe supports quality control, read mapping and alignment, low-frequency mutation calling, and inference of viral haplotypes. For generating high-quality read alignments, we developed a novel method, called ngshmmalign, based on profile hidden Markov models and tailored to small and highly diverse viral genomes. V-pipe also includes benchmarking functionality providing a standardized environment for comparative evaluations of different pipeline configurations. We demonstrate this capability by assessing the impact of three different read aligners (Bowtie 2, BWA MEM, ngshmmalign) and two different variant callers (LoFreq, ShoRAH) on the performance of calling single-nucleotide variants in intra-host virus populations. V-pipe supports various pipeline configurations and is implemented in a modular fashion to facilitate adaptations to the continuously changing technology landscape. AVAILABILITYAND IMPLEMENTATION: V-pipe is freely available at https://github.com/cbg-ethz/V-pipe. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Suíça