Your browser doesn't support javascript.
loading
Tailoring P2/P3 Biphases of Layered Nax MnO2 by Co Substitution for High-Performance Sodium-Ion Battery.
Jiang, Na; Liu, Qiunan; Wang, Jiawei; Yang, Wanfeng; Ma, Wensheng; Zhang, Liqiang; Peng, Zhangquan; Zhang, Zhonghua.
Afiliação
  • Jiang N; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan, 250061, P. R. China.
  • Liu Q; Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China.
  • Wang J; Laboratory of Advanced Spectro-Electrochemistry and Lithium-Ion Batteries, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.
  • Yang W; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan, 250061, P. R. China.
  • Ma W; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan, 250061, P. R. China.
  • Zhang L; Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China.
  • Peng Z; Laboratory of Advanced Spectro-Electrochemistry and Lithium-Ion Batteries, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.
  • Zhang Z; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan, 250061, P. R. China.
Small ; 17(7): e2007103, 2021 Feb.
Article em En | MEDLINE | ID: mdl-33502103
ABSTRACT
P-type layered oxide is a promising cathode candidate for sodium-ion batteries (SIBs), but faces the challenge of simultaneously realizing high rate capability and long cycle life. Herein, Co-substituted Nax MnO2 nanosheets with tunable P2/P3 biphase structures are synthesized by a novel dealloying-annealing strategy. The optimized P2/P3-Na0.67 Mn0.64 Co0.30 Al0.06 O2 cathode delivers an excellent rate capability of 83 mA h g-1 at a high current density of 1700 mA g-1 (10 C), and an outstanding cycling stability over 500 cycles at 1000 mA g-1 . This excellent performance is attributed to the unique P2/P3 biphases with stable crystal structures and fast Na+ diffusion between open prismatic Na sites. Moreover, operando X-ray diffraction is applied to explore the structural evolution of Na0.67 Mn0.64 Co0.30 Al0.06 O2 during the Na+ extraction/insertion processes, and the P2-P2' phase transition is effectively suppressed. Operando Raman technique is utilized to explore the structural superiority of P2/P3 biphase cathode compared with pure P2 or P3 phase. This work highlights precisely tailoring the phase composition as an effective strategy to design advanced cathode materials for SIBs.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article