Ambient sunlight-driven photothermal methanol dehydrogenation for syngas production with 32.9 % solar-to-hydrogen conversion efficiency.
iScience
; 24(2): 102056, 2021 Feb 19.
Article
em En
| MEDLINE
| ID: mdl-33537660
Methanol dehydrogenation is an efficient way to produce syngas with high quality. The current efficiency of sunlight-driven methanol dehydrogenation is poor, which is limited by the lack of excellent catalysts and effective methods to convert sunlight into chemicals. Here, we show that atomically substitutional Pt-doped in CeO2 nanosheets (Pts-CeO2) exhibit excellent methanol dehydrogenation activity with 500-hr level catalytic stability, 11 times higher than that of Pt nanoparticles/CeO2. Further, we introduce a photothermal conversion device to heat Pts-CeO2 up to 299°C under 1 sun irradiation owning to efficient full sunlight absorption and low heat dissipation, thus achieving an extraordinarily high methanol dehydrogenation performance with a 481.1 mmol g-1 h-1 of H2 production rate and a high solar-to-hydrogen (STH) efficiency of 32.9%. Our method represents another progress for ambient sunlight-driven stable and active methanol dehydrogenation technology.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Revista:
IScience
Ano de publicação:
2021
Tipo de documento:
Article