Your browser doesn't support javascript.
loading
Complementary performances of convolutional and capsule neural networks on classifying microfluidic images of dividing yeast cells.
Ghafari, Mehran; Clark, Justin; Guo, Hao-Bo; Yu, Ruofan; Sun, Yu; Dang, Weiwei; Qin, Hong.
Afiliação
  • Ghafari M; SimCenter, Department of Computer Science and Engineering, University of Tennessee at Chattanooga, Chattanooga, Tennessee, United States of America.
  • Clark J; SimCenter, Department of Computer Science and Engineering, University of Tennessee at Chattanooga, Chattanooga, Tennessee, United States of America.
  • Guo HB; SimCenter, Department of Computer Science and Engineering, University of Tennessee at Chattanooga, Chattanooga, Tennessee, United States of America.
  • Yu R; Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America.
  • Sun Y; Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America.
  • Dang W; Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America.
  • Qin H; SimCenter, Department of Computer Science and Engineering, University of Tennessee at Chattanooga, Chattanooga, Tennessee, United States of America.
PLoS One ; 16(3): e0246988, 2021.
Article em En | MEDLINE | ID: mdl-33730031
ABSTRACT
Microfluidic-based assays have become effective high-throughput approaches to examining replicative aging of budding yeast cells. Deep learning may offer an efficient way to analyze a large number of images collected from microfluidic experiments. Here, we compare three deep learning architectures to classify microfluidic time-lapse images of dividing yeast cells into categories that represent different stages in the yeast replicative aging process. We found that convolutional neural networks outperformed capsule networks in terms of accuracy, precision, and recall. The capsule networks had the most robust performance in detecting one specific category of cell images. An ensemble of three best-fitted single-architecture models achieves the highest overall accuracy, precision, and recall due to complementary performances. In addition, extending classification classes and data augmentation of the training dataset can improve the predictions of the biological categories in our study. This work lays a useful framework for sophisticated deep-learning processing of microfluidic-based assays of yeast replicative aging.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Leveduras / Processamento de Imagem Assistida por Computador / Divisão Celular / Imagem Molecular / Dispositivos Lab-On-A-Chip / Aprendizado Profundo Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Leveduras / Processamento de Imagem Assistida por Computador / Divisão Celular / Imagem Molecular / Dispositivos Lab-On-A-Chip / Aprendizado Profundo Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos