Your browser doesn't support javascript.
loading
Cavitation-assisted decontamination of yttria from graphite of different densities.
Lahiri, S; Mandal, D; Gogate, P R; Ghosh, A; Bhardwaj, R L.
Afiliação
  • Lahiri S; Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai 400094, India. Electronic address: sutanwi@barc.gov.in.
  • Mandal D; Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai 400094, India; Alkali Material & Metal Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
  • Gogate PR; Institute of Chemical Technology, Matunga, Mumbai 400019, India.
  • Ghosh A; Glass & Advanced Materials Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
  • Bhardwaj RL; Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
Ultrason Sonochem ; 73: 105520, 2021 May.
Article em En | MEDLINE | ID: mdl-33773435
ABSTRACT
Yttria coated graphite crucibles are widely used to handle molten refractory and radioactive metals like uranium and plutonium. However, the coated layer suffers damages like cracking and peeling off owing to thermal cycles. As a result, removal of the yttria layer from the graphite surface is essential to ensure reuse of the crucible and minimization of radioactive waste. The present work investigates intensified dissolution of yttria from the coated graphite samples using ultrasound as a non-destructive decontamination technique to recycle the graphite substrate. The optimum conditions established for maximum dissolution were 8 M as acid strength, frequency of 30 kHz, temperature of 45 °C and power density of 8 W cm-2 that resulted in maximum dissolution of 52% in 30 min. Use of an oxidant H2O2 to the acid, did not yield any improvement in the dissolution kinetics, instead, increased oxidation of the graphite substrate was observed, leading to the anomalous weight gain of the graphite substrate despite surface erosion. Effect of ultrasound on the dissolution was pronounced, with almost a threefold increase compared to dissolution performed under silent conditions. Rates of dissolution of yttria from the substrate of different densities and pore size distribution were also studied. The dissolution was slowest from graphite of density 1.82 g cm-3 as the pore size distribution was conducive to accommodate the yttria particles. The dissolution in nitric acid followed ash layer diffusion controlled kinetics. The study has demonstrated the efficacy of application of ultrasound for accelerated decontamination of graphite substrates.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Ultrason Sonochem Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Ultrason Sonochem Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2021 Tipo de documento: Article