Your browser doesn't support javascript.
loading
Inorganic-Organic Hybrid Molecular Materials: From Multiferroic to Magnetoelectric.
Liu, Xiao-Lin; Li, Dong; Zhao, Hai-Xia; Dong, Xin-Wei; Long, La-Sheng; Zheng, Lan-Sun.
Afiliação
  • Liu XL; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
  • Li D; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
  • Zhao HX; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
  • Dong XW; Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005, P. R. China.
  • Long LS; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
  • Zheng LS; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
Adv Mater ; 33(50): e2004542, 2021 Dec.
Article em En | MEDLINE | ID: mdl-33829543
ABSTRACT
Inorganic-organic hybrid molecular multiferroic and magnetoelectric materials, similar to multiferroic oxide compounds, have recently attracted increasing attention because they exhibit diverse architectures, a flexible framework, fascinating physics, and potential magnetoelectric functionalities in novel multifunctional devices such as energy transformation devices, sensors, and information storage systems. Herein, the classification of multiferroicity and magnetoelectricity is briefly outlined and then the recent advances in the multiferroicity and magnetoelectricity of inorganic-organic hybrid molecular materials, particularly magnetoelectricity and the relevant magnetoelectric mechanisms and their categories are summarized. In addition, a personal perspective and an outlook are provided.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2021 Tipo de documento: Article