Your browser doesn't support javascript.
loading
Temperature effect on the SARS-CoV-2: A molecular dynamics study of the spike homotrimeric glycoprotein.
Martí, Didac; Torras, Juan; Bertran, Oscar; Turon, Pau; Alemán, Carlos.
Afiliação
  • Martí D; Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.
  • Torras J; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain.
  • Bertran O; Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.
  • Turon P; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain.
  • Alemán C; Departament de Física EETAC, Universitat Politècnica de Catalunya, c/ Esteve Terrades, 7, 08860 Castelldefels, Spain.
Comput Struct Biotechnol J ; 19: 1848-1862, 2021.
Article em En | MEDLINE | ID: mdl-33841750
ABSTRACT
Rapid spread of SARS-CoV-2 virus have boosted the need of knowledge about inactivation mechanisms to minimize the impact of COVID-19 pandemic. Recent studies have shown that SARS-CoV-2 virus can be disabled by heating, the exposure time for total inactivation depending on the reached temperature (e.g. more than 45 min at 329 K or less than 5 min at 373 K. In spite of recent crystallographic structures, little is known about the molecular changes induced by the temperature. Here, we unravel the molecular basis of the effect of the temperature over the SARS-CoV-2 spike glycoprotein, which is a homotrimer with three identical monomers, by executing atomistic molecular dynamics (MD) simulations at 298, 310, 324, 338, 358 and 373 K. Furthermore, both the closed down and open up conformational states, which affect the accessibility of receptor binding domain, have been considered. Our results suggest that the spike homotrimer undergoes drastic changes in the topology of the hydrogen bonding interactions and important changes on the secondary structure of the receptor binding domain (RBD), while electrostatic interactions (i.e. salt bridges) are mainly preserved. The proposed inactivation mechanism has important implications for engineering new approaches to fight the SARS-CoV-2 coronavirus, as for example, cleaving or reorganizing the hydrogen bonds through chaotropic agents or nanoparticles with local surface resonant plasmon effect.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Comput Struct Biotechnol J Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Comput Struct Biotechnol J Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Espanha