Your browser doesn't support javascript.
loading
Nanoscale Disorder Generates Subdiffusive Heat Transport in Self-Assembled Nanocrystal Films.
Utterback, James K; Sood, Aditya; Coropceanu, Igor; Guzelturk, Burak; Talapin, Dmitri V; Lindenberg, Aaron M; Ginsberg, Naomi S.
Afiliação
  • Utterback JK; Department of Chemistry, University of California, Berkeley, California 94720, United States.
  • Sood A; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Coropceanu I; Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.
  • Guzelturk B; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
  • Talapin DV; Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
  • Lindenberg AM; Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.
  • Ginsberg NS; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
Nano Lett ; 21(8): 3540-3547, 2021 04 28.
Article em En | MEDLINE | ID: mdl-33872014
Investigating the impact of nanoscale heterogeneity on heat transport requires a spatiotemporal probe of temperature on the length and time scales intrinsic to heat navigating nanoscale defects. Here, we use stroboscopic optical scattering microscopy to visualize nanoscale heat transport in disordered films of gold nanocrystals. We find that heat transport appears subdiffusive at the nanoscale. Finite element simulations show that tortuosity of the heat flow underlies the subdiffusive transport, owing to a distribution of nonconductive voids. Thus, while heat travels diffusively through contiguous regions of the film, the tortuosity causes heat to navigate circuitous pathways that make the observed mean-squared expansion of an initially localized temperature distribution appear subdiffusive on length scales comparable to the voids. Our approach should be broadly applicable to uncover the impact of both designed and unintended heterogeneities in a wide range of materials and devices that can affect more commonly used spatially averaged thermal transport measurements.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas / Temperatura Alta Idioma: En Revista: Nano Lett Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas / Temperatura Alta Idioma: En Revista: Nano Lett Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos