Your browser doesn't support javascript.
loading
Geometric deep learning enables 3D kinematic profiling across species and environments.
Dunn, Timothy W; Marshall, Jesse D; Severson, Kyle S; Aldarondo, Diego E; Hildebrand, David G C; Chettih, Selmaan N; Wang, William L; Gellis, Amanda J; Carlson, David E; Aronov, Dmitriy; Freiwald, Winrich A; Wang, Fan; Ölveczky, Bence P.
Afiliação
  • Dunn TW; Duke Forge and Duke AI Health, Duke University, Durham, NC, USA. timothy.dunn@duke.edu.
  • Marshall JD; Duke Global Neurosurgery and Neurology Division, Department of Neurosurgery, Duke University, Durham, NC, USA. timothy.dunn@duke.edu.
  • Severson KS; Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA. jesse_d_marshall@fas.harvard.edu.
  • Aldarondo DE; Department of Neurobiology, Duke University, Durham, NC, USA.
  • Hildebrand DGC; Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Chettih SN; Program in Neuroscience, Harvard University, Cambridge, MA, USA.
  • Wang WL; Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA.
  • Gellis AJ; Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
  • Carlson DE; Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
  • Aronov D; Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
  • Freiwald WA; Duke Forge and Duke AI Health, Duke University, Durham, NC, USA.
  • Wang F; Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA.
  • Ölveczky BP; Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
Nat Methods ; 18(5): 564-573, 2021 05.
Article em En | MEDLINE | ID: mdl-33875887
ABSTRACT
Comprehensive descriptions of animal behavior require precise three-dimensional (3D) measurements of whole-body movements. Although two-dimensional approaches can track visible landmarks in restrictive environments, performance drops in freely moving animals, due to occlusions and appearance changes. Therefore, we designed DANNCE to robustly track anatomical landmarks in 3D across species and behaviors. DANNCE uses projective geometry to construct inputs to a convolutional neural network that leverages learned 3D geometric reasoning. We trained and benchmarked DANNCE using a dataset of nearly seven million frames that relates color videos and rodent 3D poses. In rats and mice, DANNCE robustly tracked dozens of landmarks on the head, trunk, and limbs of freely moving animals in naturalistic settings. We extended DANNCE to datasets from rat pups, marmosets, and chickadees, and demonstrate quantitative profiling of behavioral lineage during development.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Aprendizado Profundo / Atividade Motora Limite: Animals Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Aprendizado Profundo / Atividade Motora Limite: Animals Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos